基于ARIMA 模型的全民健康体检数据预测【附代码】

✅博主简介:本人擅长数据处理、建模仿真、程序设计、论文写作与指导,项目与课题经验交流。项目合作可私信或扫描文章底部二维码。


旨在分析城乡居民全民健康体检数据,重点研究五年间高发慢性疾病的变化趋势及流行病学特点。基于此数据,本文使用ARIMA时间序列模型对高发慢性疾病进行趋势预测,旨在为制定相关政策和疾病防控措施提供科学依据。本文的主要工作包括:

  1. 对2016-2020年健康体检数据的统计分析;
  2. 基于ARIMA模型对2021年数据的验证及对2022年的预测;
  3. 对主要慢性疾病(如高脂血症、肥胖、高血压、脂肪肝和糖尿病)的预测及趋势分析。
1. 数据收集与预处理

我们回顾性收集了2016-2020年18岁以上城乡居民的全民健康体检数据,重点关注五种慢性疾病的检出率:高脂血症、肥胖、高血压、脂肪肝和糖尿病。以2016年第一季度至2020年第四季度的数据作为训练集,应用ARIMA模型进行预测。

2. ARIMA模型构建

ARIMA模型是用于时间序列数据分析和预测的经典统计模型。本文对五种慢性疾病分别构建了合适的ARIMA模型,并进行了模型定阶、参数估计、诊断检验和预测。各疾病的最优模型如下:

  • 高脂血症:ARIMA(2,0,0)(0,0,0)_4
  • 肥胖:ARIMA(0,0,0)(0,0,0)_4
  • 高血压:ARIMA(1,2,1)(0,0,0)_4
  • 脂肪肝:ARIMA(0,0,1)(0,1,0)_4
  • 糖尿病:ARIMA(2,1,1)(0,0,0)_4
% 数据加载
data = readtable('health_exam_data.csv');  % 加载数据,假设每列为一种疾病的检出率
disease = data.HighLipid;  % 以高脂血症为例

% 绘制时间序列图
figure;
plot(disease);
title('高脂血症检出率时间序列');
xlabel('时间(季度)');
ylabel('检出率');

% 时间序列平稳性检验(ADF检验)
[h, pValue, stat, cValue] = adftest(disease);
if h == 0
    disp('数据非平稳,进行差分处理');
    diffDisease = diff(disease);  % 进行一阶差分
    figure;
    plot(diffDisease);
    title('差分后时间序列');
else
    disp('数据平稳');
    diffDisease = disease;
end

% ARIMA模型拟合
model = arima(2, 0, 0);  % 假设模型为ARIMA(2,0,0)
fitModel = estimate(model, diffDisease);

% 模型诊断(残差分析)
figure;
subplot(2,1,1);
plotResiduals(fitModel, 'Histogram');  % 残差直方图
title('残差直方图');
subplot(2,1,2);
plotResiduals(fitModel, 'ACF');  % 残差的自相关函数
title('残差自相关图');

% 预测2021年和2022年数据
numSteps = 8;  % 预测未来8个季度
[forecast, forecastError] = forecast(fitModel, numSteps, 'Y0', diffDisease);

% 将预测值还原为实际值
forecastedDisease = cumsum([disease(end); forecast]);

% 绘制预测结果
figure;
plot(1:length(disease), disease, 'b', 'DisplayName', '历史数据');
hold on;
plot(length(disease)+1:length(disease)+numSteps, forecastedDisease(2:end), 'r--', 'DisplayName', '预测数据');
title('高脂血症检出率预测');
xlabel('时间(季度)');
ylabel('检出率');
legend;

% 计算预测误差(MAE和RMSE)
actualDisease = data.HighLipid2021;  % 实际2021年的数据
mae = mean(abs(forecastedDisease(2:5) - actualDisease));
rmse = sqrt(mean((forecastedDisease(2:5) - actualDisease).^2));
fprintf('MAE: %.4f\n', mae);
fprintf('RMSE: %.4f\n', rmse);

4. 模型选择与验证

在模型构建过程中,使用了AIC(Akaike信息准则)作为模型选择的依据,同时利用残差的自相关性检验模型的拟合效果。最终通过对比多个ARIMA模型,确定了最优模型用于各疾病的时间序列预测。

5. 结果分析

根据ARIMA模型的预测结果,我们得出以下结论:

  • 高脂血症和脂肪肝:未来趋势呈现上下波动。
  • 肥胖和高血压:检出率整体呈下降趋势。
  • 糖尿病:检出率呈现先上升后下降的趋势。

通过分析疾病的流行趋势,可以为制定慢性病防治措施提供科学依据。例如,针对肥胖和高血压的持续下降趋势,说明现有的健康管理措施取得了一定的成效,而高脂血症和脂肪肝的波动提示需要加强对这些疾病的长期管理。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

坷拉博士

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值