✅博主简介:本人擅长数据处理、建模仿真、程序设计、论文写作与指导,项目与课题经验交流。项目合作可私信或扫描文章底部二维码。
旨在分析城乡居民全民健康体检数据,重点研究五年间高发慢性疾病的变化趋势及流行病学特点。基于此数据,本文使用ARIMA时间序列模型对高发慢性疾病进行趋势预测,旨在为制定相关政策和疾病防控措施提供科学依据。本文的主要工作包括:
- 对2016-2020年健康体检数据的统计分析;
- 基于ARIMA模型对2021年数据的验证及对2022年的预测;
- 对主要慢性疾病(如高脂血症、肥胖、高血压、脂肪肝和糖尿病)的预测及趋势分析。
1. 数据收集与预处理
我们回顾性收集了2016-2020年18岁以上城乡居民的全民健康体检数据,重点关注五种慢性疾病的检出率:高脂血症、肥胖、高血压、脂肪肝和糖尿病。以2016年第一季度至2020年第四季度的数据作为训练集,应用ARIMA模型进行预测。
2. ARIMA模型构建
ARIMA模型是用于时间序列数据分析和预测的经典统计模型。本文对五种慢性疾病分别构建了合适的ARIMA模型,并进行了模型定阶、参数估计、诊断检验和预测。各疾病的最优模型如下:
- 高脂血症:ARIMA(2,0,0)(0,0,0)_4
- 肥胖:ARIMA(0,0,0)(0,0,0)_4
- 高血压:ARIMA(1,2,1)(0,0,0)_4
- 脂肪肝:ARIMA(0,0,1)(0,1,0)_4
- 糖尿病:ARIMA(2,1,1)(0,0,0)_4
% 数据加载
data = readtable('health_exam_data.csv'); % 加载数据,假设每列为一种疾病的检出率
disease = data.HighLipid; % 以高脂血症为例
% 绘制时间序列图
figure;
plot(disease);
title('高脂血症检出率时间序列');
xlabel('时间(季度)');
ylabel('检出率');
% 时间序列平稳性检验(ADF检验)
[h, pValue, stat, cValue] = adftest(disease);
if h == 0
disp('数据非平稳,进行差分处理');
diffDisease = diff(disease); % 进行一阶差分
figure;
plot(diffDisease);
title('差分后时间序列');
else
disp('数据平稳');
diffDisease = disease;
end
% ARIMA模型拟合
model = arima(2, 0, 0); % 假设模型为ARIMA(2,0,0)
fitModel = estimate(model, diffDisease);
% 模型诊断(残差分析)
figure;
subplot(2,1,1);
plotResiduals(fitModel, 'Histogram'); % 残差直方图
title('残差直方图');
subplot(2,1,2);
plotResiduals(fitModel, 'ACF'); % 残差的自相关函数
title('残差自相关图');
% 预测2021年和2022年数据
numSteps = 8; % 预测未来8个季度
[forecast, forecastError] = forecast(fitModel, numSteps, 'Y0', diffDisease);
% 将预测值还原为实际值
forecastedDisease = cumsum([disease(end); forecast]);
% 绘制预测结果
figure;
plot(1:length(disease), disease, 'b', 'DisplayName', '历史数据');
hold on;
plot(length(disease)+1:length(disease)+numSteps, forecastedDisease(2:end), 'r--', 'DisplayName', '预测数据');
title('高脂血症检出率预测');
xlabel('时间(季度)');
ylabel('检出率');
legend;
% 计算预测误差(MAE和RMSE)
actualDisease = data.HighLipid2021; % 实际2021年的数据
mae = mean(abs(forecastedDisease(2:5) - actualDisease));
rmse = sqrt(mean((forecastedDisease(2:5) - actualDisease).^2));
fprintf('MAE: %.4f\n', mae);
fprintf('RMSE: %.4f\n', rmse);
4. 模型选择与验证
在模型构建过程中,使用了AIC(Akaike信息准则)作为模型选择的依据,同时利用残差的自相关性检验模型的拟合效果。最终通过对比多个ARIMA模型,确定了最优模型用于各疾病的时间序列预测。
5. 结果分析
根据ARIMA模型的预测结果,我们得出以下结论:
- 高脂血症和脂肪肝:未来趋势呈现上下波动。
- 肥胖和高血压:检出率整体呈下降趋势。
- 糖尿病:检出率呈现先上升后下降的趋势。
通过分析疾病的流行趋势,可以为制定慢性病防治措施提供科学依据。例如,针对肥胖和高血压的持续下降趋势,说明现有的健康管理措施取得了一定的成效,而高脂血症和脂肪肝的波动提示需要加强对这些疾病的长期管理。