纯电动汽车EHB-电机复合制动系统控制策略【simulink仿真】

博主简介:擅长数据搜集与处理、建模仿真、程序设计、仿真代码、论文写作与指导,毕业论文、期刊论文经验交流。

 ✅ 具体问题可以私信或扫描文章底部二维码。


随着汽车传感、控制等技术的快速发展,车载控制系统功能日益增多。在制动系统方面,传统的机械直连制动系统因结构复杂、集成度低、性能差、可靠性低等问题日益凸显。为迎合国家汽车电动化、智能化的战略发展需求,EHB(Electro-Hydraulic Brake)系统因其高度集成、结构简洁、制动解耦、响应快等优点,逐渐成为当前汽车制动系统的最佳选择方案。尤其在纯电动汽车中,EHB与电机复合制动系统的设计与控制成为研究热点,旨在改善汽车的制动性能,提高安全性与舒适性。本文依托“智能电动线控底盘关键技术研究与产品开发”(编号:2016YFB0101002)这一国家重点项目,围绕EHB-电机复合制动系统控制所存在的关键问题展开了深入研究。

EHB-电机复合制动系统动态特性建模研究

本文首先设计了一种新的EHB系统构型,该构型不仅简化了传统EHB系统的复杂度,还增强了系统的响应速度和精度。基于此构型,本文对影响EHB系统响应的关键环节进行了详细的动态特性建模。具体而言,模型考虑了液压泵、电磁阀、蓄能器、制动管路以及制动器等多个组件的动态行为,通过建立非线性微分方程组来描述整个系统的动态特性。为了验证模型的准确性,本文在Matlab/Simulink环境中构建了仿真模型,并与实际台架试验数据进行了对比。结果表明,所建立的EHB系统动态特性模型能够准确反映实际系统的动态响应特性,为后续的控制算法开发和测试奠定了坚实的基础。

EHB-电机复合制动系统顶层控制研究

针对纯电动汽车,本文提出了EHB-电机复合制动系统控制的整体架构,将控制系统细分为驾驶意图识别、EHB-电机复合制动系统顶层控制、协调控制、执行控制四个部分。在顶层控制部分,本文重点研究了以下几个方面:

  1. 基于3阶Bessel的制动减速度平滑算法:针对上层ADAS/人机切换控制系统输出的离散、阶跃的减速度控制指令,本文提出了一种基于3阶Bessel滤波器的平滑算法。该算法能够在保证制动响应时间的前提下,有效减少ADAS/人机切换控制系统介入时产生的突兀现象,提高驾驶员对系统的可接受程度。通过仿真和实车测试,验证了该算法的有效性。

  2. 基于ADRC的闭环控制:为了确保汽车在制动器磨损、外界环境温度变化、摩擦片涉水等不确定性干扰下仍能保持一致的制动性能,本文引入了自抗扰控制(ADRC)技术。ADRC通过实时估计和补偿系统的不确定性和外部干扰,保证了制动减速度的稳定性和一致性。实验结果表明,基于ADRC的制动减速度控制能够在多种工况下保持良好的性能。

  3. 基于MPC的横摆力矩决策与最优力矩分配控制策略:在相平面理论的基础上,本文提出了一种基于模型预测控制(MPC)的横摆力矩决策算法,该算法能够根据车辆的行驶状态和驾驶意图,实时计算出最优的横摆力矩。同时,本文还设计了一种兼顾横纵向稳定性的最优力矩分配控制策略,确保车辆在紧急制动、高速转弯等情况下保持良好的稳定性。通过仿真和实车测试,验证了该控制策略的有效性。

EHB-电机复合制动系统协调控制策略研究

针对EHB-电机复合制动系统在制动模式切换过程中容易产生较大冲击的问题,本文提出了一种协调控制策略,主要包括以下四个功能部分:

  1. 间隙消除:在制动模式切换前,通过预先消除制动器和制动盘之间的间隙,减少切换过程中的冲击。
  2. 液压系统响应时间确定:通过实验和仿真,确定了液压系统从接收到控制指令到实际产生制动力的时间延迟,为协调控制提供了准确的时间参数。
  3. 目标力矩一阶惯性过渡:在切换过程中,通过一阶惯性过渡的方式平滑地改变目标力矩,避免了突兀的力矩变化。
  4. 预测补偿控制:基于车辆当前的行驶状态和未来的行驶趋势,预测并补偿切换过程中可能产生的冲击,进一步提高制动舒适性。

通过实验验证,本文提出的协调控制策略在制动模式切换过程中产生的冲击度明显低于典型的协调控制策略,显著提高了制动舒适性。

EHB-电机复合制动系统执行控制策略研究

针对传统EHB系统轮缸压力控制策略难以兼顾“快速增压”和“精确控压”的问题,本文提出了一种新的EHB构型,并在EHB系统动态特性试验基础上,设计了一种基于线性时变模型预测控制(LTV-MPC)的轮缸压力控制策略。该策略通过实时更新预测模型,根据占空比的动态变化,实现最优预测控制。实验结果表明,基于LTV-MPC的轮缸压力控制策略在阶跃工况、正弦工况、扫频工况下均表现出色,能够同时满足“快速主动建压”和“压力精确控制”的要求。

此外,本文还采用了基于直接转矩控制(DTC)的永磁同步电机扭矩执行控制,确保电机能够精准地实现目标扭矩,为上层的主动制动控制或驾驶员制动控制奠定了基础。

硬件在环测试平台与集成测试

以某一前驱纯电动汽车为研究对象,本文搭建了基于Carsim、Matlab/Simulink、dSPACE、EHB的硬件在环测试平台,对本文提出的控制算法进行了全面的集成测试。测试结果表明:

  1. 3阶Bessel算法:能够在保证制动响应时间的前提下,显著降低制动冲击度,防止了汽车制动突兀的现象,提高了驾驶员对系统的可接受程度。
  2. 基于ADRC的制动减速度控制:能够根据制动器磨损、外界环境温度变化、摩擦片涉水等外界不确定性干扰进行动态补偿,实现汽车的制动性能一致性。
  3. 基于MPC的AYC控制算法:通过FMVSS126法规工况、J-Turn工况、ISO3888-1规定的双移线工况测试,结果表明本文的控制算法能够将车辆控制在稳定范围内,保证车辆不失稳。
  4. EHB-电机复合制动系统协调控制策略:与典型的协调控制策略进行对比,本文的协调控制策略在制动模式切换过程中产生的冲击度均比典型的协调控制算法小,显著提高了制动舒适性。
  5. 基于LTV-MPC的线控液压制动系统压力控制策略:能够满足“快速主动建压”和“压力精确控制”的要求,在四个制动轮缸同时制动的情况下,压力跟随性能良好。

 

 

import numpy as np
import control as ct

# 定义系统参数
Kp = 1.0  # 比例增益
Ki = 0.1  # 积分增益
Kd = 0.05  # 微分增益
Ts = 0.01  # 采样时间
N = 10  # 预测步长

# 定义系统模型
A = np.array([[1, Ts], [0, 1]])
B = np.array([[0.5 * Ts**2], [Ts]])
C = np.array([1, 0])
D = np.array([0])

# 创建离散时间状态空间模型
sys = ct.ss(A, B, C, D, Ts)

# 定义权重矩阵
Q = np.eye(N)  # 状态权重矩阵
R = np.eye(1)  # 控制权重矩阵

# 定义目标压力
target_pressure = 100.0

# 初始化状态和控制输入
x = np.array([0.0, 0.0])  # 初始状态
u = 0.0  # 初始控制输入

# MPC控制循环
for k in range(1000):
    # 获取当前状态
    current_pressure = x[0]

    # 计算误差
    error = target_pressure - current_pressure

    # 生成预测模型
    K = ct.lqr(sys.A, sys.B, Q, R)[0]  # 计算状态反馈增益
    u_mpc = K @ (target_pressure - x)  # 计算MPC控制输入

    # 限制控制输入
    u_mpc = np.clip(u_mpc, -10.0, 10.0)

    # 更新状态
    x = sys.A @ x + sys.B @ u_mpc

    # 打印当前压力和控制输入
    print(f"Step {k}: Pressure = {x[0]:.2f}, Control Input = {u_mpc:.2f}")

# 结果分析
# 可以通过绘制压力随时间的变化曲线来分析控制效果

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

坷拉博士

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值