✅博主简介:本人擅长数据处理、建模仿真、程序设计、论文写作与指导,项目与课题经验交流。项目合作可私信或扫描文章底部二维码。
本文提出了一种基于STM32的土壤水分监测系统设计,旨在解决监测数据单一、预测实时性低等问题。系统通过硬件设计实现土壤水分的实时监测,结合环境因素数据采集和预测模型的优化,提升了预测精度与系统的稳定性,广泛适用于农业生产中的精准灌溉管理。以下为系统设计的核心内容。
1. 基于STM32的土壤水分监测终端设计
1.1 数据采集
该土壤水分监测终端基于STM32微控制器,能够实时采集土壤水分及环境因素数据。与传统单一的土壤水分监测系统不同,该终端同时采集以下环境参数:
- 土壤水分:通过土壤湿度传感器获取土壤中的含水量数据。
- 温度和湿度:通过DHT11或DHT22传感器采集环境温湿度数据。
- 光照强度:通过光照传感器测量光照强度,分析光照对土壤水分变化的影响。
- 空气压力与降水量:通过气压传感器(如BMP180)和雨滴传感器监测空气压力与降水情况。
所有传感器数据通过STM32的ADC、I2C或SPI接口采集,并进行处理。
1.2 数据显示与传输
采集的数据通过LCD屏实时显示,便于现场查看。同时,监测终端还具备以下功能:
- LCD显示:实时显示土壤含水量、温湿度、光照强度等数据,供用户直观查看。
- 数据传输:利用无线通信模块(如ESP8266或LoRa)将采集到的数据上传至后台管理系统,实现远程监控。
1.3 电路设计
系统的电路设计围绕STM32进行,核心电路模块包括:
- 传感器接口电路:为各类传感器提供适配的连接接口。
- LCD显示电路:与STM32通过SPI或I2C协议连接的液晶显示屏。
- 无线通信电路:用于将数据通过WiFi或LoRa进行远程传输。
- 电源管理电路:考虑到田间操作的低功耗需求,设计了电源管理电路,支持太阳能供电或电池供电。
2. 土壤水分后台管理系统设计
2.1 数据存储与分析
后台管理系统用于存储和分析由监测终端上传的土壤水分及相关环境数据。主要功能包括:
- 数据存储:采集的数据被存储在服务器中,以供后续分析与处理。
- 数据分析与处理:通过对采集到的历史数据进行分析,识别土壤水分变化趋势,生成报表和图表。
2.2 远程配置
后台管理系统允许用户远程配置监测终端的相关参数,包括:
- 传感器的采样频率调整;
- 数据上传间隔的配置;
- 设备的功耗模式管理。
该功能提高了系统的灵活性和可维护性,便于用户根据实际需要调整设备参数,降低维护成本。
3. 高实时性的土壤含水量预测方法
3.1 土壤含水量预测模型
为提高土壤含水量的预测精度和实时性,本文采用基于误差反向传播(BP)神经网络的土壤水分预测模型。该模型通过学习历史监测数据,能够预测未来一段时间内的土壤水分变化趋势。
- 输入层:模型的输入包括当前采集到的土壤水分、温度、湿度、光照强度等环境数据。
- 隐藏层:通过多层感知器结构捕捉输入数据间的非线性关系。
- 输出层:预测土壤含水量的未来变化。
3.2 遗传算法与蚁群算法优化
为了进一步提高预测模型的精度,本文引入了遗传算法(GA)和蚁群算法(ACO)对神经网络模型的参数进行优化。具体优化过程如下:
- 遗传算法:通过模拟自然选择和遗传操作,寻找神经网络的最优初始权重和阈值,从而加快模型的收敛速度。
- 蚁群算法:用于优化神经网络的学习率和层数等参数,以避免局部最优问题,提高模型预测的准确性。
3.3 预测模型移植至STM32
经过优化的土壤水分预测模型被移植到STM32中,利用监测终端实时采集的数据进行现场预测。系统根据采集到的当前环境参数,通过BP神经网络预测出未来一段时间内的土壤水分变化趋势,预测结果实时显示在LCD屏上。
数据来源: