✅博主简介:本人擅长数据处理、建模仿真、程序设计、论文写作与指导,项目与课题经验交流。项目合作可私信或扫描文章底部二维码。
随着全球对可持续发展和环境保护的重视,新能源纯电动无人卡车在矿山运输中的应用日益增多。这些车辆不仅能够有效降低碳排放和能源消耗,还可以提高运输效率,满足现代矿山的生产需求。然而,如何有效地调度这些无人卡车,以实现运输成本最小化和车辆等待时间最短,仍然是一个复杂的多目标优化问题。
1.1 调度需求分析
在矿山生产和车辆充电的实际需求中,需要综合考虑以下几个关键因素:
- 电池电量:电动无人卡车的续航能力受限于电池电量,必须确保车辆在完成运输任务前有足够的电量。
- 车铲生产能力:矿山的生产能力会直接影响到矿石的装载量,从而影响车辆的调度策略。
- 矿石品位:不同品位的矿石可能需要不同的运输策略,以优化收益和降低成本。
- 车辆装载量:车辆的装载量不仅影响运输效率,也关系到充电时间和能耗。
2. 多目标调度模型的构建
为了满足新能源纯电动无人卡车的调度需求,本文建立了一个多目标调度模型,旨在优化运输成本和卡车总等待时间。模型的目标函数如下:
2.1 约束条件
模型需要遵循多个约束条件,包括:
- 电池电量约束:每辆车在每次运输后必须返回充电,以确保电池电量满足后续任务。
- 生产能力约束:运输量不能超过矿山的生产能力。
- 车辆调度约束:车辆的调度必须符合生产和充电计划,避免过度等待和空驶。
3. 混合遗传免疫算法的设计
在解决多目标调度问题时,经典的多目标遗传算法(如NSGA-II)在搜索过程中容易出现种群多样性丧失的问题。为此,本文结合免疫算法的种群多样性保持机制,设计了一种适用于多目标调度模型的混合遗传免疫算法。
3.1 遗传算法的基本框架
该混合算法的基本步骤如下:
- 初始种群生成:随机生成一定数量的调度方案作为初始种群。
- 适应度评估:根据目标函数计算每个个体的适应度。
- 选择操作:采用轮盘赌或锦标赛选择等方法,选择适应度高的个体进行交叉和变异。
- 交叉与变异:通过交叉操作生成新个体,并应用变异操作增加种群多样性。
3.2 免疫算法机制
结合免疫算法的种群保持机制,通过以下方式提升算法的性能:
- 克隆选择:对于适应度高的个体,进行克隆,生成多个克隆体。
- 变异与选择:对克隆体进行变异操作,选择适应度较高的克隆体进入下一代。
- 多样性保持:通过设置多样性阈值,确保种群中存在足够的多样性,以提高全局搜索能力。
4. 仿真实验与结果分析
为验证所设计的混合遗传免疫算法的有效性,本文以河南省某露天矿无人化智能采区为背景,进行了仿真实验。
4.1 数据准备
从实际矿山的调度和生产数据中提取所需信息,包括矿石品位、生产能力、电池电量及运输成本等。这些数据为模型的构建和算法的测试提供了基础。
4.2 仿真实验设置
通过对比实验,验证所提算法与传统算法在性能上的差异。实验主要关注以下几个方面:
- 运输成本:评估不同算法在减少运输成本方面的效果。
- 等待时间:比较各方案下卡车的总等待时间。
- 矿石运输量:考察矿石运输量的变化,以评估生产效率。
5. 实验结果
实验结果表明,所提的混合遗传免疫算法在多个方面表现出色:
- 运输成本降低:与传统的调度算法相比,所提算法的运输成本减少了约15%。
- 总等待时间缩短:总等待时间降低了12.44%,显著提高了车辆的利用效率。
- 矿石运输量增加:在保证能耗低的情况下,矿石运输量提高了约10%。
function electric_truck_scheduling
% 参数设置
num_trucks = 5; % 卡车数量
num_orders = 10; % 订单数量
demands = randi([50, 100], 1, num_orders); % 订单需求
capacities = randi([200, 300], 1, num_trucks); % 卡车能力
costs = randi([10, 20], num_trucks, num_orders); % 成本矩阵
wait_times = randi([1, 5], 1, num_orders); % 等待时间矩阵
% 初始化决策变量
x = zeros(num_trucks, num_orders); % 选择矩阵
% 求解模型
[best_solution, best_cost] = solve_model(x, demands, capacities, costs, wait_times);
% 输出结果
fprintf('最佳解:\n');
disp(best_solution);
fprintf('总成本: %f\n', best_cost);
end
function [best_solution, best_cost] = solve_model(x, demands, capacities, costs, wait_times)
% 初始解
best_solution = x;
best_cost = inf;
% 遍历所有可能的解(简化示例,实际应使用优化算法)
for i = 1:1000
% 随机选择供应商和订单
rand_trucks = randi([1, size(x, 1)], 1, length(demands));
rand_orders = randi([1, size(x, 2)], 1, length(demands));
% 更新选择矩阵
temp_solution = zeros(size(x));
for j = 1:length(demands)
temp_solution(rand_trucks(j), rand_orders(j)) = demands(j);
end
% 检查是否满足能力约束
if all(sum(temp_solution, 2) <= capacities)
% 计算总成本
current_cost = sum(sum(costs .* temp_solution)) + sum(wait_times);
if current_cost < best_cost
best_cost = current_cost;
best_solution = temp_solution;
end
end
end
end