✅博主简介:本人擅长建模仿真、数据分析、论文写作与指导,项目与课题经验交流。项目合作可私信或扫描文章底部二维码。
自动导向搬运车(AGV)在智能制造车间的应用日益广泛。生产调度作为执行生产计划和合理配置资源的关键环节,以往多以加工机器资源为中心。然而,随着制造技术的进步,传统的调度方式难以满足现代生产的复杂性和灵活性需求。因此,将制造车间的生产和物流两大要素结合,实施加工机器与AGV的双资源集成调度,成为智能制造领域的重要研究方向。
在本文中,我们对AGV物料配送与作业调度的集成优化算法进行了深入探讨。首先,分析了柔性作业车间调度(FJSP)问题,特别关注工序与机器排产的约束。我们选择最小化最大完工时间作为优化性能指标,构建了FJSP的数学模型。分析了AGV系统在作业车间中的运载方式,并确定了工序分派策略与装载站驻留策略。通过对FJSP的研究,我们进一步探讨了AGV与作业调度的集成调度问题(FJSP-AGV)。
在FJSP-AGV问题的分析中,考虑了AGV在装载站、卸载站与机器之间的空载与负载两种运行状态。我们确定了增加AGV选择后问题的约束条件,并在此基础上建立了FJSP-AGV集成优化问题的数学模型。这一模型为后续的优化算法设计提供了理论基础。
针对FJSP问题,本文提出了一种改进的鲸鱼优化算法(IWOA)。该算法通过设计工序加工与机器选择的双层编码方式和机器贪婪解码方案,提供了一种混合种群初始化策略。这种初始化策略能够增强算法的自适应能力,并结合非线性收敛因子和自适应改进策略,使算法在给定性能指标下取得更好的优化结果。与原始的鲸鱼优化算法相比,IWOA在解决FJSP问题时表现出了显著的优势。
接着,针对FJSP-AGV问题,我们提出了一种混沌麻雀算法(HSSA)。该算法设计了一种针对工序排列、机器选择和AGV选择的三层编解码方式。引入Hénon混沌映射以优化初始种群,通过自适应改进的安全值、发现者和侦察者参数,结合跟随者的多项学习策略,显著提升了全局和局部搜索能力,从而加快了算法的迭代速率。实验结果表明,与传统的麻雀算法(SSA)相比,HSSA在优化性能和收敛速度上都表现出色。
综上所述,本文通过对AGV物料配送与作业调度的集成优化算法的研究,提供了一种有效的解决方案,旨在提升智能制造车间的整体效率。通过引入改进的鲸鱼优化算法和混沌麻雀算法,本文的研究不仅丰富了调度算法的理论体系,也为实际应用提供了新的思路和方法。
import numpy as np
import random
class ImprovedWhaleOptimizationAlgorithm:
def __init__(self, population_size, max_iter, problem_dimension):
self.population_size = population_size
self.max_iter = max_iter
self.problem_dimension = problem_dimension
self.population = np.random.rand(population_size, problem_dimension)
self.best_solution = None
self.best_fitness = float('inf')
def fitness(self, solution):
# 假设的目标函数
return np.sum(solution**2)
def optimize(self):
for iteration in range(self.max_iter):
for i in range(self.population_size):
fitness_value = self.fitness(self.population[i])
if fitness_value < self.best_fitness:
self.best_fitness = fitness_value
self.best_solution = self.population[i]
# 更新位置
for i in range(self.population_size):
r1 = random.random()
r2 = random.random()
a = 2 - iteration * (2 / self.max_iter)
# 更新位置
new_solution = self.population[i] + a * r1 * (self.best_solution - self.population[i])
self.population[i] = np.clip(new_solution, 0, 1) # 保持在边界内
class HénonSparrowSearchAlgorithm:
def __init__(self, population_size, max_iter, problem_dimension):
self.population_size = population_size
self.max_iter = max_iter
self.problem_dimension = problem_dimension
self.population = np.random.rand(population_size, problem_dimension)
self.best_solution = None
self.best_fitness = float('inf')
def fitness(self, solution):
# 假设的目标函数
return np.sum(solution**2)
def optimize(self):
for iteration in range(self.max_iter):
for i in range(self.population_size):
fitness_value = self.fitness(self.population[i])
if fitness_value < self.best_fitness:
self.best_fitness = fitness_value
self.best_solution = self.population[i]
# 更新位置
for i in range(self.population_size):
# 使用混沌映射和学习策略更新位置
r = random.random()
if r < 0.5:
self.population[i] += (self.best_solution - self.population[i]) * random.random()
else:
self.population[i] -= (self.best_solution - self.population[i]) * random.random()
self.population = np.clip(self.population, 0, 1) # 保持在边界内
# 使用示例
population_size = 30
max_iter = 100
problem_dimension = 5
# 改进鲸鱼优化算法
iwoa = ImprovedWhaleOptimizationAlgorithm(population_size, max_iter, problem_dimension)
iwoa.optimize()
print("IWOA 最佳解:", iwoa.best_solution)
# Hénon麻雀搜索算法
hssa = HénonSparrowSearchAlgorithm(population_size, max_iter, problem_dimension)
hssa.optimize()
print("HSSA 最佳解:", hssa.best_solution)