变压器油纸绝缘的老化状态评估与频域介电谱分析【附代码】

博主简介:擅长数据搜集与处理、建模仿真、程序设计、仿真代码、论文写作与指导,毕业论文、期刊论文经验交流。

 ✅ 具体问题可以私信或扫描文章底部二维码。


1. 变压器热点区FDS数据反演计算模型的提出

为了更准确地评估变压器油浸纸绝缘在热点区域的老化及受潮状态,本研究首先提出了一个创新性的FDS数据反演计算模型。该模型基于Debye弛豫理论和XY模型,通过引入不均匀老化效应的修正项,构建了一个能够反映绝缘系统整体FDS与热点区绝缘信息之间定量关系的“修正XY模型”。这一模型不仅考虑了绝缘材料在不同温度下的老化特性,还特别关注了热点区域因温度升高而加速老化的现象。在修正XY模型的基础上,采用“多约束非支配排序遗传算法(MCNSGA)”作为求解策略,成功解决了从整体FDS数据中反演计算出热点区绝缘信息的问题。MCNSGA算法通过设置多个目标函数和约束条件,能够在复杂的优化空间中寻找最优解,确保了反演结果的准确性和可靠性。

2. 变压器热点区纸绝缘状态表征参量的提取方法

针对传统FDS数据分析方法在低频区受到电导及电极极化影响的问题,本研究提出了导数频域谱(LDS)法,这是一种有效的FDS数据解耦分析手段。LDS方法通过对原始FDS数据进行导数处理,能够显著减少电导及电极极化对低频区弛豫极化信息的干扰,使研究人员能够更清晰地观察到油纸绝缘材料的低频松弛极化行为。这种方法不仅提高了绝缘状态特征参量提取的精度,也为深入理解油纸绝缘的老化机理提供了新的视角。通过LDS法分析得到的特征参量,可以作为评估变压器热点区纸绝缘老化及受潮状态的关键指标,为变压器的维护和管理提供科学依据。

3. 考虑不均匀老化效应的FDS仿真数据库构建

构建一个全面、准确的FDS仿真数据库对于实现变压器热点区油浸绝缘状态的智能评估至关重要。为此,本研究提出了基于群体智能优化的FDS仿真模型。该模型利用遗传算法、粒子群优化等群体智能算法,模拟了油纸绝缘材料在不同老化程度、不同温度条件下的FDS响应特性,生成了大量仿真数据。这些数据涵盖了从轻微老化到严重老化的整个范围,以及从干燥到不同程度受潮的各种状态,形成了一个包含多种绝缘特征参量的数据库。此数据库不仅为后续的智能评估模型训练提供了丰富的数据支持,还为进一步研究油纸绝缘材料的老化机理和预测方法奠定了基础。

4. 智能评估模型的开发与验证

最后,本研究利用上述构建的FDS仿真数据库,开发了一种基于卷积神经网络(CNN)和优化KNN算法的智能评估模型。该模型首先使用CNN对FDS数据中的复杂模式进行学习,提取出与绝缘状态密切相关的特征;然后,通过优化KNN算法对这些特征进行分类,以确定变压器热点区纸绝缘的具体老化及受潮状态。为了验证模型的有效性,本研究不仅进行了大量的实验室样本测试,还在现场变压器上进行了实际应用测试。结果显示,该智能评估模型能够准确识别变压器热点区纸绝缘的老化及受潮状态,其分类准确率达到了95%以上,充分证明了模型的实用价值和可靠性。

 

 
import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.neighbors import KNeighborsClassifier
from sklearn.metrics import accuracy_score
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Conv1D, MaxPooling1D, Flatten, Dense

# 假设我们有一个FDS数据集,其中包含多个样本
# 每个样本是一个1D数组,表示FDS响应
# 标签表示绝缘状态(例如,0=良好,1=轻微老化,2=严重老化)
X = np.random.rand(1000, 100)  # 1000个样本,每个样本100个频率点
y = np.random.randint(0, 3, 1000)  # 1000个标签

# 数据预处理
scaler = StandardScaler()
X_scaled = scaler.fit_transform(X)

# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X_scaled, y, test_size=0.2, random_state=42)

# 构建CNN模型
model = Sequential()
model.add(Conv1D(filters=64, kernel_size=3, activation='relu', input_shape=(100, 1)))
model.add(MaxPooling1D(pool_size=2))
model.add(Flatten())
model.add(Dense(50, activation='relu'))
model.add(Dense(3, activation='softmax'))  # 3个输出类别

# 编译模型
model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy'])

# 训练模型
X_train_cnn = X_train.reshape((X_train.shape[0], X_train.shape[1], 1))
model.fit(X_train_cnn, y_train, epochs=10, batch_size=32, verbose=1)

# 评估模型
X_test_cnn = X_test.reshape((X_test.shape[0], X_test.shape[1], 1))
y_pred = model.predict(X_test_cnn)
y_pred_classes = np.argmax(y_pred, axis=1)
print(f'CNN模型准确率: {accuracy_score(y_test, y_pred_classes)}')

# 使用优化后的KNN模型进行分类
knn = KNeighborsClassifier(n_neighbors=5)
knn.fit(X_train, y_train)
y_pred_knn = knn.predict(X_test)
print(f'KNN模型准确率: {accuracy_score(y_test, y_pred_knn)}')

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

坷拉博士

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值