图像语义分割算法毕业论文【附代码+数据】

✅博主简介:本人擅长建模仿真、论文写作与指导,项目与课题交流。项目合作可私信或扫描文章底部二维码。


针对图像语义分割中边缘细节分割粗糙的问题,提出了一种融合超像素边缘优化准则的图像语义分割算法。语义分割任务中,边缘细节的精确性尤为重要,尤其是在处理复杂的图像场景时,深度学习模型在多次下采样的过程中容易丢失重要的边缘信息,导致分割结果的边缘区域模糊。为了弥补这一不足,本文首先采用空洞残差块构建编码网络,通过串行空洞卷积扩大感受野,在不增加额外计算开销的前提下,减少细节信息的丢失。同时,空洞卷积能够保留更多的空间信息,使网络能够捕捉到不同尺度的图像特征,特别是在处理大尺寸目标或远距离物体时,具备更好的特征表达能力。其次,本文设计了一种多层次特征融合模块,通过类似跳跃连接的方式将低层次的细节信息与高层次的语义信息进行融合,从而更好地结合图像的局部细节与全局结构。传统的深度学习模型通常侧重于高层次语义信息的学习,忽视了对边缘细节的刻画,而这种特征融合策略有效增强了对细节区域的关注。此外,本文引入了超像素边缘优化准则,利用超像素划分方法将图像中的相似区域进行聚类,并结合预分割结果对边缘细节进行精细优化。这种优化准则通过增强模型对边缘区域的感知能力,避免了在分割边界处出现模糊或错分现象。实验部分,本文在PASCAL VOC 2012、City Scapes和ADE20k三个公开数据集上进行了对比实验,实验结果显示,所提出的算法在边缘细节分割的准确性上显著优于现有的语义分割算法,证明了超像素边缘优化在解决边缘模糊问题上的有效性,适用于各类图像语义分割任务。

(2) 针对语义分割中上下文信息缺失导致的分割不连续、局部信息不足等问题,本文提出了一种基于注意力机制引导的双分支图像语义分割算法。语义分割任务不仅需要精确的边缘分割,还需要在全局和局部信息之间找到平衡,才能确保每个像素都能够与全局上下文保持一致。然而,传统方法往往只依赖单一的网络结构来同时捕捉全局和局部特征,导致模型在处理复杂场景时出现全局信息不足或局部细节丢失的问题。为了解决这一问题,本文提出了双分支网络结构,分别通过局部特征提取与全局特征建模来捕捉图像的不同层次信息。首先,本文设计了一个超像素采样加权模块,利用超像素聚类的方法对相似的像素点进行分组,从而增强模型对局部信息的捕捉能力。通过对超像素内部的像素依赖关系进行建模,网络能够更加精细地学习局部细节特征,特别是在边缘区域或纹理复杂的区域中,提升了分割的精确度。其次,本文设计了一个类中心注意力模块,通过先验信息获取各个类别的中心特征,从而在全局尺度上对每个类别的分布进行建模。传统的自注意力机制虽然能够捕捉全局信息,但其计算复杂度较高,且容易引入信息冗余。本文通过引入类中心建模机制,在降低计算复杂度的同时,增强了网络对不同类别之间的区分能力,从而避免了不同类别之间的混淆。最后,本文利用可学习的加权参数对局部和全局信息进行融合,使网络能够自适应地在不同场景下选择重要信息进行处理,从而提高分割的整体精度。实验结果表明,本文提出的双分支网络结构在PASCAL VOC 2012、City Scapes、ADE20k及Cam Vid等多个数据集上的表现均优于传统的单一网络结构。尤其是在处理复杂的道路、城市景观和多类别物体场景时,该算法展现出了更高的分割精度和效率。

(3) 在以上两种算法的基础上,本文从实际应用的角度进一步讨论了如何在复杂场景中优化图像语义分割模型的性能。现有的深度学习模型虽然在实验室环境下取得了较高的分割精度,但在实际应用场景中,如自动驾驶、智能安防等领域,图像分割算法需要面对更加多变的场景和更高的实时性要求。为了适应这些需求,本文首先对模型的参数量进行了优化,通过减少冗余层数和计算复杂度,提升了模型的推理速度。在超像素采样和类中心注意力模块的基础上,本文引入了轻量级的特征提取模块,减少了网络对计算资源的依赖,使其能够在边缘设备或嵌入式设备上高效运行。此外,针对实际场景中多类别物体的复杂性,本文对类中心注意力模块进行了进一步优化,通过动态调整各类别之间的权重分布,确保网络在面对不同类别物体时能够保持较高的分割准确性。同时,本文还在训练阶段加入了基于现实场景的合成数据,提升了模型在复杂环境中的泛化能力。通过对多个公开数据集和实际应用场景中的实验验证,本文提出的改进算法不仅在分割精度上有所提升,还能够在复杂场景中保持较好的实时性和稳定性,具备较高的应用价值。


function segmented_image = superpixel_attention_segmentation(input_image, num_superpixels)
    % 将输入图像转换为灰度图像
    gray_image = rgb2gray(input_image);
    
    % 利用SLIC超像素算法对图像进行超像素划分
    [L, N] = superpixels(input_image, num_superpixels);
    
    % 生成超像素边界图
    BW = boundarymask(L);
    
    % 对每个超像素区域进行均值处理
    segmented_image = zeros(size(input_image), 'like', input_image);
    for i = 1:N
        mask = L == i;
        R = mean(input_image(:,:,1), 'all', 'omitnan');
        G = mean(input_image(:,:,2), 'all', 'omitnan');
        B = mean(input_image(:,:,3), 'all', 'omitnan');
        segmented_image(:,:,1) = mask * R;
        segmented_image(:,:,2) = mask * G;
        segmented_image(:,:,3) = mask * B;
    end
    
    % 应用注意力机制(模拟实现简单注意力权重)
    attention_weights = rand(size(input_image, 1), size(input_image, 2));
    segmented_image = bsxfun(@times, segmented_image, attention_weights);
    
    % 显示分割结果
    figure, imshow(segmented_image);
    title('超像素与注意力机制分割结果');
end

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

坷拉博士

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值