✅博主简介:本人擅长数据处理、建模仿真、论文写作与指导,科研项目与课题交流。项目合作可私信或扫描文章底部二维码。
(1) 无人机航拍图像目标检测的特征提取与网络架构设计
无人机航拍图像目标检测是计算机视觉领域中的重要研究方向之一。随着无人机技术和深度学习技术的快速发展,目标检测算法在无人机航拍图像中的应用场景日益丰富。然而,由于无人机航拍视角的特殊性,与普通水平视角的目标检测任务相比,航拍图像目标检测面临着更多的挑战,如物体尺度变化大、小目标占比高、物体分布密集以及复杂环境干扰等问题。因此,如何设计一种能够应对上述难题的高效目标检测算法,成为了无人机航拍图像分析的重要课题。针对这一问题,本文提出了一种基于CNN(卷积神经网络)与Transformer结合的U型全局特征感知网络,以提升在复杂场景下的目标检测精度。
首先,本文设计了一种U型特征提取网络架构,该网络通过对图像的多尺度特征进行捕捉,从而能够有效地处理目标在航拍图像中的尺度变换。U型架构通过跳跃连接(skip connection)在网络的编码器和解码器之间传递特征信息,使得网络能够同时保留目标的细节特征与全局结构信息。这种设计在无人机航拍图像中对密集小目标的识别尤其重要,因为它能够在保持目标细节的同时避免丢失全局上下文信息。此外,本文进一步提出了一种全局-局部特征感知模块(Global-Local Feature Perception Module),该模块通过引入自注意力机制(Self-Attention)与多头注意力机制(Multi-Head Attention),实现了局部特征与全局特征的高效融合。局部特征能够捕捉到小物体的精细信息,而全局特征则能够建模图像中目标之间的上下文关系,从而增强模型在复杂场景下的目标识别能力。
接着,本文在U型特征提取网络的基础上设计了一个级联特征金字塔网络(Cascaded Feature Pyramid Network)。该网络通过多级特征融合模块,将浅层特征与深层特征进行级联组合,使得网络能够在不同层次上捕捉到目标的尺度信息。与传统的特征金字塔不同,级联特征金字塔网络采用了一种逐级融合的策略,在每一级特征融合时,都引入了U型特征提取网络中不同层级的多尺度特征。实验结果表明,这种设计能够有效提升模型对不同尺度目标的检测精度,尤其是在小目标和密集目标检测场景中表现出色。最后,为了进一步提升模型的检测精度,本文还提出了一种高效解耦头(Decoupled Detection Head),通过将分类任务与定位任务进行解耦,从而减少任务之间的相互干扰,提高了模型的收敛速度与预测精度。
(2) 面向小目标检测的多尺度特征融合网络
无人机航拍图像中的目标通常具有较小的尺寸,且在图像中呈现出密集分布的特性,因此在目标检测过程中,小目标检测的难度显著增加。传统的目标检测网络往往在处理小目标时表现不佳,主要原因在于深层网络的下采样操作导致目标特征的丢失,从而使得小目标在特征图中被压缩甚至消失。针对这一问题,本文提出了一种基于多尺度特征融合的小目标检测网络,以提升模型在小目标检测任务中的表现。
首先,本文引入了一个专门针对小目标检测设计的微小物体检测头(Tiny Object Detection Head),该检测头通过在浅层特征图上进行预测,从而增强了对小目标的感知能力。不同于传统的大物体检测头,该检测头采用了更小的感受野(Receptive Field)和更密集的锚框(Anchor Boxes),能够更好地适应小目标的特点。在实验中,这种微小物体检测头有效提升了模型对小目标的检测精度,并且由于其轻量化的设计,大幅度减少了模型的计算量。
其次,本文设计了一种多尺度特征提取模块(Multi-Scale Feature Extraction Module),该模块通过引入多分支结构对图像中的不同尺度特征进行提取。具体来说,该模块在特征提取过程中同时应用了不同尺度的卷积核与池化操作,从而在单个特征图中捕捉到多层次的目标信息。此外,本文还设计了一个双向密集特征金字塔网络(Bidirectional Dense Feature Pyramid Network),该网络能够同时在前向传播与后向传播中进行特征融合。通过这种双向密集连接结构,浅层特征中的细节信息能够无损地传递到深层特征中,从而增强了小目标的多尺度特征表示能力。
最后,为了验证所提网络在小目标检测任务中的有效性,本文在VisDrone和UAVDT两个具有代表性的小目标航拍图像数据集上进行了实验。实验结果表明,相较于其他主流目标检测算法(如Faster R-CNN、YOLOv3等),本文提出的多尺度特征融合网络在小目标检测的精度上取得了显著的提升,尤其在密集目标场景中,检测精度提升了约10%。这证明了多尺度特征融合网络能够有效解决小目标难以识别的问题,同时在模型的计算效率上也具有一定的优势。
(3) 在真实应用场景中的验证与应用
为了验证所提出算法在实际场景中的应用价值,本文选取了光伏阵列缺陷检测这一典型的无人机航拍场景进行实验。光伏阵列由于其分布广泛且区域面积较大,传统的人工巡检方法难以对其进行全面、及时的检测。而利用无人机航拍图像进行光伏阵列的自动化检测,不仅能够提高检测效率,还能实时发现光伏板中的裂纹、污染和遮挡等缺陷。然而,光伏阵列图像中缺陷目标通常具有很小的尺寸,并且与背景环境的对比度较低,因此在目标检测中面临着极大的挑战。
本文首先搭建了一个无人机图像采集平台,通过无人机在不同高度、不同光照条件下采集了多组光伏阵列图像数据,并构建了一个专门用于光伏缺陷检测的数据集。接着,将本文提出的多尺度特征融合网络应用于该数据集的目标检测任务中。实验结果表明,所提算法在光伏阵列缺陷检测中的表现优于传统检测方法,能够在复杂光照条件和不同检测高度下保持较高的检测精度。与传统方法相比,本文算法在裂纹和遮挡缺陷的检测上表现尤为突出,能够在较低对比度的情况下准确定位缺陷位置。
clc; clear; close all;
% 读取数据集和预处理
datasetPath = 'path_to_dataset';
imageFiles = dir(fullfile(datasetPath, '*.jpg'));
numImages = length(imageFiles);
% 加载预训练的深度学习模型
net = load('pretrainedNetwork.mat');
inputSize = net.Layers(1).InputSize;
% 初始化结果存储
results = [];
% 遍历数据集进行目标检测
for i = 1:numImages
% 读取图像并进行预处理
img = imread(fullfile(datasetPath, imageFiles(i).name));
imgResized = imresize(img, [inputSize(1) inputSize(2)]);
% 目标检测
detectionResults = detectObjects(net, imgResized);
% 可视化检测结果
figure;
imshow(img);
hold on;
for j = 1:size(detectionResults, 1)
bbox = detectionResults(j, 1:4);
label = detectionResults(j, 5);
rectangle('Position', bbox, 'EdgeColor', 'r', 'LineWidth', 2);
text(bbox(1), bbox(2), label, 'Color', 'yellow');
end
hold off;
% 存储结果
results = [results; detectionResults];
end
disp('目标检测完成,结果已存储。');