综合能源系统在能源互联网中的协同规划与优化运行研究【附代码】

博主简介:擅长数据搜集与处理、建模仿真、程序设计、仿真代码、论文写作与指导,毕业论文、期刊论文经验交流。

 ✅ 具体问题可以私信或扫描文章底部二维码。


(1) 园区综合能源系统的建模分析

综合能源系统通过多类型能源设备的梯级协调调度,提高了能源的综合利用效率,满足了不同用户的多元化用能需求。为了更好地理解和优化园区综合能源系统,本研究首先建立了园区综合能源系统的能源供需耦合响应模型。该模型从多个角度出发,全面分析了园区综合能源系统的运行特点和优化需求。

首先,研究了园区综合能源系统典型集成方式下的电-气-热-冷互补耦合响应特性,提出了基于多能耦合响应的改进能源集线器建模思路。这种建模思路不仅考虑了不同能源形式之间的相互作用,还强调了能源转换过程中效率的优化,为后续的优化配置和运行提供了坚实的基础。

其次,从园区侧的角度出发,对系统内部的多类型能源设备进行了详细的建模分析,建立了园区能源供应耦合响应模型。这一模型涵盖了各种能源生产设备(如风力发电机、太阳能光伏板、燃气轮机等)以及储能装置(如电池储能系统、热能储存系统等),并通过耦合响应特性分析,揭示了不同设备之间的相互影响和协同效应。

再次,从用户侧角度出发,分析了园区多能负荷的综合响应特性,建立了园区能源需求耦合响应模型。该模型考虑了不同用户群体在电、气、热、冷等方面的用能需求及其变化规律,通过耦合响应分析,为优化能源供应策略提供了数据支持。

在此基础上,整合上述两个模型,提出了园区综合能源系统的能源供需耦合响应模型。该模型不仅能够全面反映园区内部的能源生产和消费情况,还能有效地评估不同优化策略的效果,为后续的协同规划与优化运行提供了重要的理论基础。

(2) 园区综合能源系统的优化配置

针对园区综合能源系统的优化配置问题,本研究提出了一种基于供需响应与可调场景的优化配置方法。该方法通过模拟典型日风光荷出力场景,并根据鲁棒性要求进行场景筛选,得到了风光荷鲁棒可调典型场景集。基于这些场景,建立了园区综合能源系统的规划-运行双层优化配置模型。

具体而言,上层模型以规划综合成本最低为目标,对各类能源设备的容量和数量进行优化配置。该层模型考虑了设备购置成本、安装成本、维护成本等多方面的因素,通过综合成本分析,确定了最优的设备配置方案。下层模型则以系统在典型场景下的运行成本最低为目标,优化园区内各类设备的出力。该层模型通过动态调整设备出力,确保在不同场景下都能实现最优的运行效果。

算例分析表明,所提出的优化配置方法能够合理兼顾规划方案的经济性和鲁棒性,有效降低系统规划成本,减少设备配置冗余。特别是在面对不确定的风光荷出力场景时,该方法能够通过灵活的设备配置和出力调整,确保系统的稳定运行,提高了系统的整体经济效益。

(3) 多园区综合能源系统的协同规划

为了进一步提升多园区综合能源系统的规划和运行效率,本研究提出了一种考虑容量-能量-信息共享的多园区综合能源系统协同规划方法。该方法从多园区之间的互动出发,分析了不同园区间在容量、能量和信息共享方面的机制,并建立了包含能源输入、生产、转换、存储和消费环节的综合能源系统改进集线器模型。

在此基础上,构建了规划运行协同优化的多园区综合能源系统分层规划框架。该框架分为上层和下层两个层次。上层模型在考虑容量转移措施的情况下,对各类能源设备进行数量和容量配置,以实现系统的整体优化。下层模型则考虑园区间的能量交互,以运行经济性最优为目标,制定系统的优化调度计划。

特别地,该方法在信息完全共享模式的指导下,建立了考虑容量-能量-信息共享的多园区综合能源系统的双层协同规划模型。上层模型通过优化设备配置,确保系统的长期经济效益;下层模型通过优化能量交互,确保系统的短期运行效率。算例分析表明,所提出的方法能够通过多维共享措施有效降低系统规划成本,实现多园区综合能源系统的规划-运行协同优化。

(4) 园区综合能源系统的优化运行

针对园区综合能源系统的优化运行问题,本研究提出了一种考虑多重不确定性和综合需求响应的两阶段优化运行方法。该方法首先给出了典型园区综合能源系统架构,并根据源荷不确定性随时间尺度的变化规律以及不同类型负荷的需求响应特性,建立了包含日前优化和日内优化的两阶段优化运行框架和模型。

在日前优化阶段,运用鲁棒优化方法对源荷不确定性进行表征,并考虑多类型能源负荷的时移型需求响应,建立了园区综合能源系统的日前鲁棒优化运行模型。该模型通过预先制定优化调度计划,确保在面对不确定的风光荷出力时,系统仍能保持较高的运行效率和经济性。

在日内优化阶段,进一步运用随机优化方法处理源荷不确定性因素,并引入多类型能源负荷间的替代型需求响应,建立了园区综合能源系统的日内随机优化运行模型。该模型通过实时调整设备出力和负荷调度,确保系统在实际运行过程中能够灵活应对各种不确定因素,实现最优的运行效果。

算例分析表明,所提出的方法能够有效发挥多种能源间的互补共济优势,进一步降低园区综合运行成本,实现综合能源系统的经济、环保、灵活、高效运行。特别是在面对高比例可再生能源接入的情况下,该方法能够通过灵活的需求响应机制,提高系统的可再生能源利用率,减少弃风弃光现象,促进清洁能源的充分利用。

(5) 多园区综合能源系统的协同优化运行

针对多园区综合能源系统的协同优化运行问题,本研究提出了两种优化方法:基于主从博弈的多园区综合能源系统分层分区协同优化运行方法和基于多维能量供需平衡的多园区综合能源系统多时空尺度协同优化运行方法。

首先,针对多园区属于不同利益主体的情况,基于“分布自治,集中协同”的思想,提出了多园区综合能源系统的分层分区架构。在此基础上,基于博弈理论对不同类型园区之间的能量和利益交互特性进行了分析,建立了多园区综合能源系统的分层分区主从博弈优化模型。该模型中,博弈主体(系统管理者)通过制定各园区的购能计划和园区间的能量交互计划,实现系统整体的综合效益最优;博弈从体(各园区运营商)在给定上层策略的情况下,通过优化内部设备的出力调度计划,实现园区的运行经济性最优。通过博弈迭代,达到系统均衡。算例分析表明,所提出的方法能够同时兼顾系统整体与园区个体的利益,有效实现多园区综合能源系统的分布自治和集中协同。

其次,针对多园区属于同一利益主体的情况,根据不同能源设备的响应时间和能量调控范围的空间大小,建立了多园区综合能源系统的多维能量供需平衡模型和协同调控架构。在此基础上,分上、中、下三层建立了多园区综合能源系统的多时空尺度协同优化运行模型。上层模型考虑时移型需求响应,针对多园区综合能源系统整体进行日前鲁棒优化;中层模型考虑替代型需求响应,针对单个综合能源园区进行日内滚动随机优化;下层模型考虑中断型需求响应,针对各综合能源园区中的电力环节进行实时随机优化。算例分析表明,所提出的方法能够有效发挥多种能源在时间维度和空间维度上的互补共济优势,促进系统能量的多时空尺度供需平衡。

 

 
import numpy as np
from scipy.optimize import minimize

def optimization_model(model_parameters, initial_guess):
    """
    园区综合能源系统优化配置模型求解器
    :param model_parameters: 模型参数
    :param initial_guess: 初始猜测值
    :return: 最优解
    """
    def objective_function(x):
        # 目标函数: 最小化综合成本
        total_cost = (
            np.sum(model_parameters['device_costs'] * x[:model_parameters['num_devices']]) +  # 设备购置成本
            np.sum(model_parameters['maintenance_costs'] * x[:model_parameters['num_devices']]) +  # 维护成本
            np.sum(model_parameters['operation_costs'] * x[model_parameters['num_devices']:])  # 运行成本
        )
        return total_cost

    def constraint_function(x):
        # 约束条件: 满足负荷需求
        power_balance = (
            np.sum(model_parameters['device_power'] * x[:model_parameters['num_devices']]) -
            np.sum(model_parameters['load_power'] * x[model_parameters['num_devices']:])
        )
        return [power_balance]

    # 定义优化问题
    constraints = [{'type': 'eq', 'fun': lambda x: constraint_function(x)[0]}]

    # 求解优化问题
    result = minimize(objective_function, initial_guess, method='SLSQP', constraints=constraints)
    return result.x

# 示例参数
model_parameters = {
    'device_costs': np.array([1000, 2000, 3000]),  # 设备购置成本
    'maintenance_costs': np.array([100, 150, 200]),  # 维护成本
    'operation_costs': np.array([50, 60, 70, 80, 90]),  # 运行成本
    'device_power': np.array([100, 150, 200]),  # 设备功率
    'load_power': np.array([50, 60, 70, 80, 90]),  # 负荷功率
    'num_devices': 3,  # 设备数量
}

# 初始猜测值
initial_guess = [1, 1, 1, 1, 1, 1]

# 调用求解器
optimal_solution = optimization_model(model_parameters, initial_guess)

print("最优解:", optimal_solution)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

坷拉博士

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值