主动配电网集中-分布协同控制的电压调控与灵活资源应用研究【附代码】

博主简介:擅长数据搜集与处理、建模仿真、程序设计、仿真代码、论文写作与指导,毕业论文、期刊论文经验交流。

 ✅ 具体问题可以私信或扫描文章底部二维码。


(1) 主动配电网中的多能储能与电压调节方法

随着分布式光伏和其他新能源发电的快速发展,主动配电网面临了越来越多的波动性和不确定性挑战,特别是在电压调节方面。为了应对这些挑战,本文提出了一种基于多能储能的主动配电网分布式前推回代电压调节方法。多能储能包括电池储能、热储能以及考虑建筑热惯性的温控负荷。通过集成这些多能储能,提升了配电网的安全性和经济性,使网络能够应对高比例分布式新能源带来的电压波动。

为了优化配电网的电压控制,提出了一种分布式前推回代通信框架,以实现系统的高效协作。这种方法通过对集中式电压调节模型的最优性条件进行分解,将整个系统的控制问题分散为多个分布式问题,从而通过一次迭代即可得到储能设备对电压调节的灵敏度。结合本地梯度下降算法,这种分布式前推回代通信框架允许每个多能储能单元独立进行决策,保证了全局的最优性。此外,通过充分发挥多能储能的多时段调压能力,克服了传统方法在多种耦合条件下的调控困难,如时间耦合、网络空间耦合和多能耦合等问题。最终,这种方法在高比例分布式新能源渗透的背景下,保证了配电网的电压稳定性。

(2) 基于全局灵敏度的主动配电网分布式电压控制

为进一步提高主动配电网的电压调节性能,本文提出了基于全局灵敏度的分布式电压控制方法。采用了改进的Dist Flow潮流模型,在简化节点之间电压和功率耦合关系的同时,仍然保持了潮流计算的高精度。该方法通过建立全网电压偏差对每个节点有功功率、无功功率以及电压的全局灵敏度,提出了一种多元可控设备响应灵敏度变化的秒级自治控制策略。换句话说,配电网中的各个节点可以根据全局的电压偏差实时做出自主响应,显著提高了系统的动态响应速度。

基于上述全局灵敏度的分布式控制框架,开发了一种改进的分布式前推回代通信架构,以快速准确地计算全网节点的全局灵敏度。这一改进显著减少了传统分布式方法中大量迭代通信所带来的复杂性,有效解决了因多元耦合引起的分布式实时控制适用性问题。通过这种方法,主动配电网实现了各节点之间的高效协同,特别是在多种可控资源(包括有功、无功、电压)的综合控制下,实现了整体性能的显著提升。

(3) 多能耦合下的配电网与热网协同优化调控

在主动配电网中,由于电力与其他能源系统之间的紧密耦合,为了实现多能网络的协同优化,本文提出了配电网与热网全分布式协同优化调控方法。在这种方法中,构建了能源智能体,每个智能体负责特定能源网络的管理与调控。所连接的能源网络不仅包括具有非线性潮流特性的配电网,还包括计及传热延迟的热网。在智能体之间,通过引入辅助观测变量将复杂的能流耦合约束线性化,这大大降低了系统的复杂度。

结合交替方向乘子法(ADMM)和多元变量间的相关性分析,本文提出了一种配电网与热网的分布式协同计算方法,通过分解各个智能体的问题实现并行求解。这种分布式计算方法使各个智能体能够独立进行优化,大大提升了计算速度,并且在保护各个智能体隐私的同时减少了计算量。通过这种方法,主动配电网与热网之间实现了灵活资源的分布式最优协同,增强了整个系统的经济性与运行效率。

(4) 多层级、多时间尺度集中-分布协同调控方法

针对配电网不同电压层级之间的差异性需求,本文提出了一种多层级、多时间尺度的集中-分布协同调控方法。具体而言,本文对中压和低压配电网采用了不同的调控策略:在中压配电网中采用集中式调控,以确保系统运行的全局最优性;而在低压配电网中采用分布式调控,保障各个分布式设备的隐私以及决策的灵活性。

在日内滚动时间尺度的电压调节阶段,提出了融合多层级间及低压层级内多智能体通信的集成分布式优化方法,以高收敛性保证多层级配电网的协同最优经济运行。对于实时电压控制,为应对秒级时间尺度内可能发生的不确定性,低压配电网内采用全局灵敏度分布式电压控制模型,而中压配电网则通过快速计算的优化模型来保障系统的稳定运行。该方法在多时间尺度内有效实现了集中式和分布式方法之间的协同,提高了不同层级配电网之间的协作效率,保证了跨区域内海量分布式能源设备的高效控制。

通过上述研究,本文提出的多元耦合下主动配电网集中-分布协同调控方法,综合了集中式和分布式的各自优势,增强了配电网的整体运行安全性和经济性,有效应对了多能、多时空耦合条件下的复杂调控挑战。以下为与本文题目相关的软件代码示例,用于实现多能耦合系统的协同控制,其中代码段落包括了能源智能体的基本结构及其分布式调控功能的实现。


# 实现配电网与热网的协同控制

class EnergyAgent:
    def __init__(self, id, energy_type, neighbors):
        self.id = id  # 智能体ID
        self.energy_type = energy_type  # 能源类型,例如"电力"或"热能"
        self.neighbors = neighbors  # 邻近智能体列表
        self.local_data = {}  # 存储本地的能源数据
        self.control_variables = {}  # 控制变量,如电压、温度等

    def receive_data(self, data):
        """
        从邻居智能体接收数据,用于协同调控。
        """
        for neighbor_id, value in data.items():
            self.local_data[neighbor_id] = value

    def update_control(self):
        """
        基于接收到的数据以及本地的能源需求,更新控制变量。
        """
        # 假设此处采用简单的梯度下降算法来更新控制变量
        for var, value in self.control_variables.items():
            gradient = self.calculate_gradient(var)
            self.control_variables[var] -= 0.01 * gradient

    def calculate_gradient(self, var):
        """
        计算给定控制变量的梯度。
        """
        # 这里采用一个假设的梯度计算方法
        return sum(self.local_data.values()) * 0.1  # 根据邻居的数据计算梯度

    def communicate(self):
        """
        与邻居智能体进行数据通信,交换控制变量的信息。
        """
        communication_data = {self.id: self.control_variables}
        for neighbor in self.neighbors:
            neighbor.receive_data(communication_data)

if __name__ == "__main__":
    # 创建若干个能源智能体
    agent1 = EnergyAgent(1, "电力", [])
    agent2 = EnergyAgent(2, "热能", [agent1])
    agent3 = EnergyAgent(3, "电力", [agent1, agent2])

    # 初始化智能体的控制变量
    agent1.control_variables = {"voltage": 1.0}
    agent2.control_variables = {"temperature": 20.0}
    agent3.control_variables = {"voltage": 1.1}

    # 进行多轮迭代,实现分布式调控
    for _ in range(50):
        agent1.communicate()
        agent2.communicate()
        agent3.communicate()

        agent1.update_control()
        agent2.update_control()
        agent3.update_control()

    # 输出最终的控制变量状态
    print("Agent 1 Control Variables:", agent1.control_variables)
    print("Agent 2 Control Variables:", agent2.control_variables)
    print("Agent 3 Control Variables:", agent3.control_variables)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

坷拉博士

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值