基于深度学习的地下密度异常体反演技术研究【附数据】

博主简介:擅长数据搜集与处理、建模仿真、程序设计、仿真代码、论文写作与指导,毕业论文、期刊论文经验交流。

 ✅ 具体问题可以私信或扫描文章底部二维码。


(1)2-3D Inv Net深度学习网络结构的设计与创新

地下密度异常体的反演是地球物理勘探中的一个重要课题,传统方法在处理复杂的三维地下结构时往往面临计算量大、初始参数依赖性强等挑战。为了解决这些问题,本文提出了一种名为2-3D Inv Net的深度学习反演网络,旨在通过结合二维和三维卷积神经网络,有效地将地表重力异常及其梯度异常数据映射到地下三维密度异常体的分布。

2-3D Inv Net采用编码器-解码器的结构,其中编码器部分使用二维卷积网络对地表重力异常及其梯度异常进行特征提取。具体来说,输入的二维数据经过多层卷积和池化操作,提取出高维特征表示。这些特征随后被传递到解码器部分,解码器利用三维卷积网络将提取的特征逐步还原为三维密度异常体的分布。这样的设计不仅充分利用了地表数据的二维特性,还能够有效地捕捉地下三维结构的复杂性。

在网络结构的设计过程中,2-3D Inv Net引入了多尺度特征融合机制,通过在不同尺度上进行特征提取和融合,增强了网络对不同尺度异常体的感知能力。此外,网络还采用了残差连接和跳跃连接,以缓解深层网络训练中的梯度消失问题,确保特征信息在网络中的有效传递。通过这些创新设计,2-3D Inv Net在理论样本的反演实验中表现出色,能够准确地定位地下异常体的位置,并提供高精度的密度异常信息,其反演误差显著低于传统的UNet网络,达到其80%的水平。

(2)损失函数的优化与评价指标的引入

在深度学习反演方法中,损失函数的设计对模型的最终性能具有决定性影响。为了提高地下密度异常体反演的精度,本文针对异常体的特性,提出了改进的损失函数,并引入了新的评价指标以全面评估反演结果。

首先,考虑到地下异常体与背景区域在密度分布上的显著差异,本文将异常体所在区域与其他区域进行了明确区分。在损失函数的设计中,采用了加权均方误差(Weighted Mean Square Error, Wtd MSE)和自动调整权重的假设焦点损失(Fake Focal Mean Square Error, FFMSE)。Wtd MSE通过为异常体区域赋予更高的权重,使得模型在训练过程中更加关注这些关键区域,从而提高反演的精度。而FFMSE则通过自适应调整权重,动态平衡不同区域的损失贡献,进一步提升模型的鲁棒性。

在模型训练过程中,通过实验发现,损失函数的选择对反演结果有着显著影响。具体来说,当Wtd MSE的权重参数设定为0.3时,模型的反演性能达到了最佳。为了全面评估反演结果,本文引入了核密度估计(Kernel Density Estimation)和目标区域误差(Target Region Error)作为新的评价指标。这些指标能够更细致地反映出异常体所在位置的密度异常值恢复情况。

通过对比实验,结果显示,Wtd MSE(0.3)和FFMSE在恢复异常体的密度信息方面,显著优于传统的均方误差(Mean Square Error, MSE)和平均绝对误差(Mean Absolute Error, MAE)。尤其是在综合各种反演指标的评价下,Wtd MSE(0.3)表现出了最佳的反演效果。因此,本文最终选择Wtd MSE(0.3)作为2-3D Inv Net的损失函数,有效提升了反演结果的准确性和可靠性。

(3)2-3D Inv Net方法在Kauring实测数据中的应用与验证

为了验证所提出的2-3D Inv Net深度学习反演方法的实际适用性,本文将其应用于澳大利亚Kauring地区的机载重力场实测数据。Kauring地区作为地质构造复杂的区域,其重力异常数据为地下密度异常体的反演提供了良好的测试平台。

在应用过程中,首先对Kauring地区的实测重力异常及其梯度异常数据进行了预处理,包括数据归一化和噪声滤波,以提高数据质量。随后,利用大量的正演数据对2-3D Inv Net进行了训练,确保模型具备足够的泛化能力。在训练过程中,采用Wtd MSE(0.3)作为损失函数,并结合之前提到的评价指标,对模型的反演性能进行了持续监控和优化。

反演结果显示,2-3D Inv Net成功地识别出了Kauring地区中心存在的多个密度异常体,其密度异常值介于2.2至2.32 g/cm³之间。此外,在该区域其他未被先前研究的地方,模型还发现了密度异常高达2.772 g/cm³的异常体块。这些结果不仅与地质实际情况相符,也证明了2-3D Inv Net在复杂地下环境中的有效性和准确性。

通过将理论研究与实际应用相结合,本文验证了2-3D Inv Net深度学习反演方法在处理实际重力异常数据时的稳定性和高效性。相比于传统方法,2-3D Inv Net无需复杂的初始参数设定和人为调优,能够快速、自适应地生成高精度的地下密度异常体分布图,展示了其在地球物理勘探中的广阔应用前景。

% 基于深度学习的地下密度异常体反演方法应用示例
% 本示例展示如何使用Matlab调用深度学习网络进行地下密度异常体反演

% 清空环境
clear; clc; close all;

% 加载实测重力异常数据
gravityData = load('Kauring_Gravity_Data.mat'); % 假设数据存储在.mat文件中
gravityAnomaly = gravityData.gravityAnomaly; % 地表重力异常
gravityGradient = gravityData.gravityGradient; % 重力梯度异常

% 数据预处理
% 归一化处理
gravityAnomalyNorm = (gravityAnomaly - min(gravityAnomaly(:))) / (max(gravityAnomaly(:)) - min(gravityAnomaly(:)));
gravityGradientNorm = (gravityGradient - min(gravityGradient(:))) / (max(gravityGradient(:)) - min(gravityGradient(:)));

% 构建输入数据
inputData = cat(3, gravityAnomalyNorm, gravityGradientNorm); % 合并为二维输入

% 加载训练好的2-3D Inv Net模型
net = load('2-3D_Inv_Net_Model.mat'); % 假设模型存储在.mat文件中
invNet = net.invNet;

% 进行反演
densityAnomaly = predict(invNet, inputData); % 预测三维密度异常体

% 可视化反演结果
figure;
sliceX = size(densityAnomaly,1)/2;
sliceY = size(densityAnomaly,2)/2;
sliceZ = size(densityAnomaly,3)/2;
slice(densityAnomaly, sliceX, sliceY, sliceZ);
colorbar;
title('地下密度异常体反演结果');
xlabel('X方向');
ylabel('Y方向');
zlabel('Z方向');

% 保存反演结果
save('Density_Anomaly_Inversion_Result.mat', 'densityAnomaly');

% 评价反演结果
% 假设有真实的密度异常数据进行对比
trueDensity = load('True_Density_Anomaly.mat'); % 真实密度异常数据
trueDensity = trueDensity.trueDensity;

% 计算加权均方误差(Wtd MSE)
weight = 0.3;
WtdMSE = weight * mean((densityAnomaly(:) - trueDensity(:)).^2);

% 计算假设焦点均方误差(FFMSE)
FFMSE = mean((densityAnomaly(:) - trueDensity(:)).^2 .* (1 + abs(trueDensity(:))));

% 计算均方误差(MSE)和平均绝对误差(MAE)
MSE = mean((densityAnomaly(:) - trueDensity(:)).^2);
MAE = mean(abs(densityAnomaly(:) - trueDensity(:)));

% 显示评价结果
fprintf('加权均方误差(Wtd MSE): %.4f\n', WtdMSE);
fprintf('假设焦点均方误差(FFMSE): %.4f\n', FFMSE);
fprintf('均方误差(MSE): %.4f\n', MSE);
fprintf('平均绝对误差(MAE): %.4f\n', MAE);

% 绘制误差分布图
error = densityAnomaly - trueDensity;
figure;
imagesc(squeeze(error(:,:,round(end/2))));
colorbar;
title('密度异常体反演误差分布(中层截面)');
xlabel('X方向');
ylabel('Y方向');

% 核密度估计
figure;
ksdensity(error(:));
title('密度异常体反演误差的核密度估计');
xlabel('误差值');
ylabel('概率密度');

% 目标区域误差评估
% 假设目标区域掩码已知
targetMask = load('Target_Mask.mat'); % 目标区域掩码
targetMask = targetMask.mask;

% 计算目标区域误差
targetError = error(targetMask);
meanTargetError = mean(targetError);
stdTargetError = std(targetError);

fprintf('目标区域误差均值: %.4f\n', meanTargetError);
fprintf('目标区域误差标准差: %.4f\n', stdTargetError);

% 保存误差分析结果
save('Error_Analysis_Result.mat', 'WtdMSE', 'FFMSE', 'MSE', 'MAE', 'error', 'meanTargetError', 'stdTargetError');

% 绘制三维密度异常体
figure;
h = volshow(densityAnomaly, 'BackgroundColor', [1,1,1], 'RenderMode', 'Volume');
title('三维密度异常体可视化');

% 结束
disp('地下密度异常体反演及评价完成。');

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

坷拉博士

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值