✅ 博主简介:擅长数据搜集与处理、建模仿真、程序设计、仿真代码、论文写作与指导,毕业论文、期刊论文经验交流。
✅ 具体问题可以私信或扫描文章底部二维码。
(一)数字水印技术基础理论与综述
1. 信息隐藏技术概述
信息隐藏技术作为数字水印技术的根基,有着独特的基本原理和显著特征。其原理是将特定的信息巧妙地隐藏于看似普通的数字载体中,如音频、图像、视频等,通过不引人注意的方式改变载体的某些特征来嵌入信息,同时保证载体在感官上基本无明显变化,从而实现信息的隐蔽传输与存储。
信息隐藏技术具有不可感知性、鲁棒性、安全性、隐蔽性等关键特征。不可感知性确保嵌入信息后的载体在人类视觉或听觉系统下难以察觉其变化;鲁棒性使得隐藏的信息在经历各种常见的信号处理、传输过程中的噪声干扰以及恶意攻击后,仍能保持一定的完整性和可恢复性;安全性保障嵌入的信息不被未授权的第三方轻易获取或篡改;隐蔽性则要求隐藏信息的存在及嵌入方式不易被察觉。
从分类来看,信息隐藏技术主要包括隐写术和数字水印技术两大分支。隐写术侧重于秘密通信,将秘密信息隐藏在载体中,以避开第三方的检测,重点在于隐藏信息的保密性;而数字水印技术主要用于版权保护、数据认证等领域,通过在数字产品中嵌入特定的标识信息,来证明产品的所有权和真实性等。
信息隐藏技术在当今数字化时代有着广泛的应用,在军事通信中,可用于传递机密情报,防止被敌方截获和破解;在数字媒体版权保护领域,能有效遏制盗版行为,维护创作者的合法权益;在医疗影像领域,可对患者的隐私信息进行隐藏,确保数据在传输和存储过程中的安全性;在电子商务中,保障交易信息的真实性和完整性,防止交易数据被篡改。
2. 数字水印技术详解
数字水印技术的起源可以追溯到早期对数字产品版权保护的迫切需求。随着数字媒体的广泛传播和复制的便捷性,版权问题日益突出,数字水印技术应运而生。
其模型及原理主要是将水印信息通过特定的算法嵌入到数字载体中,在不影响载体正常使用和感知质量的前提下,使水印成为载体的一部分。当需要验证版权或检测载体的完整性时,再通过相应的提取算法将水印信息还原出来。
数字水印具有多种特性,如不可见性,即水印在载体中不可被人眼直接察觉;鲁棒性,能抵抗诸如滤波、压缩、噪声污染、几何变换等各种攻击和信号处理操作;安全性,防止水印被非法去除或篡改;可证明性,能够确凿地证明数字产品的版权归属;以及自恢复性,在部分载体信息受损的情况下,仍能恢复出一定的水印信息以验证版权。
根据不同的分类标准,数字水印可分为多种类型。按照水印的嵌入域划分,可分为空域水印和变换域水印,其中 DCT(离散余弦变换)域水印是变换域水印中较为常用的一种;按照水印的可见性分类,有可见水印和不可见水印;依据水印的用途,又可分为版权水印、认证水印、篡改提示水印等。
在实际应用中,数字水印技术广泛应用于图像、音频、视频等多种数字媒体。在图像版权保护方面,摄影作品、绘画作品等在网络上传播时,通过嵌入数字水印来明确版权所有者,防止他人盗用;在音频领域,音乐作品、有声读物等也可利用数字水印技术来保护知识产权;在视频行业,电影、电视剧等视频内容的版权保护也离不开数字水印技术,通过在视频的关键帧或特定位置嵌入水印,实现对视频版权的有效监管。
目前,数字水印技术的研究现状呈现出蓬勃发展的态势,众多研究人员不断探索新的算法和技术,以提高水印的性能和适用性。一方面,在算法创新上,不断改进嵌入和提取算法,以增强水印的鲁棒性和不可见性;另一方面,随着人工智能、机器学习等新兴技术的发展,也在尝试将这些技术融入数字水印领域,实现更加智能化的水印处理。同时,在应用领域,也在不断拓展其应用范围,从传统的版权保护向数字媒体的全生命周期管理等方向发展,如在数字媒体的分发、存储、使用等各个环节都能发挥数字水印的作用,以保障数字媒体的安全性和合法性。
为了更好地开展数字水印技术的研究,有必要对其常用算法、预处理技术、感知模型、攻击与性能评估以及常用软件进行综述。数字水印常用算法包括空域算法、变换域算法(如 DCT 算法、DWT 算法等),每种算法都有其优缺点和适用场景。预处理技术主要用于增强水印的安全性和鲁棒性,如对水印信息进行加密、混沌置乱等操作。感知模型则是用于衡量水印嵌入对载体感知质量的影响,确保水印的不可见性,像 Watson 感知模型等在数字水印领域得到了广泛应用。对数字水印的攻击与性能评估也是研究的重要环节,常见的攻击方式包括噪声攻击、压缩攻击、几何攻击等,通过对水印方案在各种攻击下的性能评估,可以不断改进和优化水印算法。此外,市场上也存在一些常用的数字水印软件,这些软件为数字水印技术的实际应用提供了便利工具,同时也为研究人员提供了一定的参考和借鉴。
为了便于后续对基于 DCT 域数字图像鲁棒水印方案的深入理解和研究,还概括复习了离散余弦变换、图像色彩模型、MATLAB 程序设计基本理论。离散余弦变换在数字图像处理中具有重要地位,它能够将图像从空域转换到变换域,使得在变换域中进行水印嵌入和处理更加方便有效,通过对图像进行 DCT 变换,可以将图像的能量集中在低频部分,便于在中频部分嵌入水印信息,同时减少对图像视觉质量的影响。图像色彩模型如 RGB 模型、CMYK 模型等,了解这些模型有助于在彩色图像中准确地选择合适的通道或分量进行水印处理。MATLAB 作为一款强大的科学计算和图像处理软件,掌握其基本程序设计理论,能够为数字水印方案的实现提供有力的技术支持,包括图像的读取、处理、变换以及水印的嵌入和提取算法的编程实现等。
(二)DCT 域自适应量化索引调制水印方案研究
1. 方案设计
在深入研究量化思想的基础上,提出了一种创新的自适应基于扩展变换的量化索引调制(QIM)水印方案。在嵌入水印之前,首先对原始载体图像进行扩展变换操作。通过特定的算法从原始图像中提取向量,这些向量能够反映图像的某些特征和信息。然后,在图像的中频部分产生投影向量,并进一步进行投影变换,将图像的信息映射到一个新的空间中,以便更好地进行水印嵌入操作。
在抖动调制过程中,采用自适应量化步长是本方案的关键创新点之一。量化步长不再是固定不变的,而是根据图像自身的特点进行动态调整。例如,对于图像中纹理丰富、细节较多的区域,适当减小量化步长,以保证水印嵌入后的不可见性;而对于图像中相对平滑、变化较小的区域,可以适当增大量化步长,提高水印的嵌入强度和鲁棒性。这样的自适应策略能够在保证水印不可见性的前提下,使水印更好地抵抗各种可能的攻击和信号处理操作。
2. 水印提取与盲检测
提取水印时采用最小距离检测法,这是一种高效且可靠的水印提取算法。该方法不需要原始图像的参与,实现了盲检测,大大提高了水印检测的实用性和便利性。在实际应用场景中,当需要验证图像的版权时,只需要获取待检测图像,通过最小距离检测法就能够提取出其中的水印信息,而无需依赖原始图像,这在很多情况下是非常关键的,比如在图像在网络上广泛传播后,版权所有者可能无法轻易获取原始图像,但仍然能够通过这种盲检测方法来证明自己的版权。
3. 仿真测试与性能分析
对该水印方案进行了全面深入的仿真测试,包括对嵌入水印图像的保真度和水印方案的鲁棒性进行了详细的评估。在保真度方面,通过计算峰值信噪比(PSNR)等指标来衡量嵌入水印后图像与原始图像在视觉质量上的接近程度。实验结果表明,该水印方案在保证水印不可见性的同时,能够维持较高的图像保真度,使得人眼难以察觉水印的存在,满足了实际应用中对图像质量的要求。
在鲁棒性测试方面,针对多种常见的攻击方式进行了仿真实验,如放缩、剪切、高斯噪声、椒盐噪声、JPEG 压缩、亮度攻击等。实验结果显示,该水印方案对这些攻击具有较好的鲁棒性。例如,在经过一定程度的 JPEG 压缩后,仍然能够准确地提取出水印信息;在遭受高斯噪声和椒盐噪声污染时,水印的完整性也能得到较好的保持;对于图像的放缩和剪切操作,水印也能够在一定程度上抵抗这些几何变换的影响。然而,针对乘性和加性亮度攻击的仿真实验结果表明,本水印方案对加性亮度攻击的鲁棒性不如乘性亮度攻击,这可能是由于图像亮度分量的非线性变化引起的。这种差异为后续的研究工作指明了方向,即今后将致力于改进该水印方案在应对加性亮度攻击方面的缺陷,进一步提高水印方案的整体鲁棒性。
(三)RGB 彩色 3D 图像鲁棒数字水印方案研究
1. 基于 SS 的彩色 3D 图像水印方案
将扩频数字水印技术创新性地应用到立体图像中,提出了基于 SS(扩频)的彩色 3D 图像的水印方案。在该方案中,首先对彩色 3D 图像进行适当的预处理,包括图像的分割、色彩空间的转换等操作,以便更好地选择合适的嵌入位置和方式。然后,利用扩频技术将水印信息扩展到一个较宽的频带上,使其能量分布更加均匀,从而提高水印的抗干扰能力和鲁棒性。
实验结果表明,嵌入水印后的彩色 3D 图像具有很好的保真度,PSNR 值高达 41.8847dB,这意味着人眼几乎无法察觉水印的存在,图像的视觉质量得到了很好的保障。而且,在如此高保真度的前提下,对各种常见的信号处理或者攻击,如高斯噪声、椒盐噪声、JPEG 压缩、亮度改变、数值缩放等,都具有良好的鲁棒性。这使得该水印方案在彩色 3D 图像的版权保护领域具有很大的应用潜力,能够有效地保护 3D 图像的知识产权,防止其被非法复制和篡改。
2. 基于改进 Watson 感知模型的自适应 DM 彩色 3D 图像水印方案
提出了基于改进的 Watson 感知模型的自适应 DM(差分调制)彩色 3D 图像的水印方案。在该方案中,对传统的 Watson 感知模型进行了改进,通过用改进后的间隙来计算自适应量化步长,并将其应用于彩色 3D 图像的水印技术中。改进的 Watson 感知模型很好地解决了间隙不随振幅缩放线性变化的问题,使得量化步长的计算更加准确和合理,从而进一步提高了水印的嵌入效果和性能。
实验结果显示,嵌入水印后的立体图像在保持令人满意的保真度的同时,具有很好的鲁棒性能。对高斯噪声、椒盐噪声、JPEG 压缩、亮度改变、数值缩放等攻击的水印提取的误码率(BER)值都小于 0.07,这表明在遭受这些攻击后,水印仍然能够以较高的准确率被提取出来,证明了该水印方案的有效性和可靠性。
3. 两种 3D 图像水印方案性能比较与结合思路
在保证水印方案相同的图像保真度,即固定 PSNR 值,并且采用相同的彩色基分解法的前提下,对这两种水印方案与基于未改进的 Watson 感知模型的水印方案对高斯噪声、JPEG 压缩、恒亮度调整、数值缩放的敏感度进行了测试和比较。实验结果证明,我们提出的基于改进的 Watson 感知模型的自适应 DM 彩色 3D 图像的水印方案性能有所提高,特别是在应对一些复杂攻击时,表现出更好的稳定性和鲁棒性;基于 SS 的彩色 3D 图像的水印方案对 JPEG 压缩攻击的性能稳定,但对高斯噪声、数值缩放的表现较差,对恒亮度调整攻击强度较小时不敏感;基于改进的 Watson 感知模型的自适应 DM 彩色 3D 图像的水印方案对恒亮度调整和数值缩放攻击的性能相对变化缓慢,较稳定,但在高斯噪声和 JPEG 压缩的高强度攻击下性能急剧变差。
介于两种彩色 3D 图像的水印方案各有优缺点,我们想到将两种水印方法结合起来,如采用开关表法等方式,根据图像所面临的不同攻击类型和场景,灵活地选择合适的水印嵌入和提取策略,这将是本文今后要进行的重要研究工作之一。通过这种结合方式,有望进一步提高彩色 3D 图像水印方案的综合性能,更好地满足实际应用中对彩色 3D 图像版权保护的严格要求。
此外,将本文的 DM - mW - 3D 方案与文献 [93] 和文献 [94] 做了对比实验。对于高斯攻击、亮度攻击和数值缩放攻击,本文的改进后的水印方案都取得了令人满意的效果,而且对高斯攻击和亮度攻击的敏感度明显低于对比文献,这充分证明了本文所提出的数字图像鲁棒水印方案的先进性和有效性,为数字图像的版权保护提供了更有力的技术支持。
总的来说,本文提出的两种水印方案在数字图像的版权保护方面都做出了一定的贡献,尤其是对于 3D 彩色图像这种新型的数字媒体,本研究具有一定的广度和深度,相关成果已在国内外知名刊物发表学术论文,为数字水印技术在 3D 图像领域的进一步发展奠定了坚实的基础,也为后续的研究工作提供了有益的参考和借鉴。
% 读取原始图像
original_image = imread('lena.jpg');
% 转换为灰度图像
gray_image = rgb2gray(original_image);
% 对灰度图像进行 DCT 变换
dct_image = dct2(gray_image);
% 生成水印信息(这里简单示例为一个随机序列)
watermark = randi([0, 1], 100, 1);
% 选择中频系数位置(这里简单示例,实际需根据图像特性更精确选择)
mid_freq_indices = [20:40; 20:40];
% 嵌入水印(采用简单的量化索引调制示例)
alpha = 10; % 嵌入强度系数
for i = 1:length(watermark)
x = dct_image(mid_freq_indices(1, i), mid_freq_indices(2, i));
if watermark(i) == 1
dct_image(mid_freq_indices(1, i), mid_freq_indices(2, i)) =...
round(x / alpha) * alpha + alpha / 2;
else
dct_image(mid_freq_indices(1, i), mid_freq_indices(2, i)) =...
round(x / alpha) * alpha;
end
end
% 进行逆 DCT 变换得到嵌入水印后的图像
watermarked_image = idct2(dct_image);
% 显示原始图像和嵌入水印后的图像
subplot(1, 2, 1);
imshow(original_image);
title('原始图像');
subplot(1, 2, 2);
imshow(uint8(watermarked_image));
title('嵌入水印后的图像');