也许黎曼猜想是错误的

黎曼猜想是错误的黎曼猜想是一位名叫黎曼 (Bernhard Riemann) 的数学家提出的。黎曼是一位英年早逝的德国数学家,出生于1826年,去世于1866年,享年还不到40岁。黎曼的一生虽然短暂,却对数学的很多领域都做出了巨大贡献,影响之广甚至波及到了物理。 比如以他名字命名的“黎曼几何” 不仅是重要的数学分支,而且成为了爱因斯坦 (Albert Einstein) 创立广义相对论不可或缺的...
摘要由CSDN通过智能技术生成

也许黎曼猜想是错误的

黎曼猜想是一位名叫黎曼 (Bernhard Riemann)的数学家提出的。黎曼是一位英年早逝的德国数学家,出生于1826年,去世于1866年,享年还不到 40 岁。黎曼的一生虽然短暂,却对数学的很多领域都做出了巨大贡献,影响之广甚至波及到了物理。 比如以他名字命名的“黎曼几何” 不仅是重要的数学分支,而且成为了爱因斯坦 (AlbertEinstein)创立广义相对论不可或缺的数学工具。

黎曼猜想是关于黎曼 z e t a zeta zeta 函数 ζ ( s ) ζ(s) ζ(s) 的零点分布的猜想,希尔伯特在第二届国际数学家大会上提出了20世纪数学家应当努力解决的 23个数学问题,被认为是 20世纪数学的制高点,其中便包括黎曼假设。 现今克雷数学研究所悬赏的世界七大数学难题中也包括黎曼猜想。

1. 1. 1. 黎曼猜想内容

黎曼观察到,素数的频率紧密相关于一个精心构造的所谓黎曼 z e t a zeta zeta 函数 ζ ( s ) ζ(s) ζ(s) 的性态. 黎曼假设断言,方程 ζ ( s ) = 0 ζ(s)=0 ζ(s)=0 的所有有意义的解都在一条直线上。这点已经对于开始的1,500,000,000个解验证过。
黎曼zeta函数 ζ ( s ) ζ(s) ζ(s) 是级数表达式

ζ ( s ) = ∑ n = 1 ∞ 1 n s ( R e ( s ) > 1 , n ∈ N + ) ζ(s) = \sum_{n=1}^{\infty}{\frac{1}{n^{s}}} \left ( Re(s)>1, n\in \mathbb{N}^{+} \right) ζ(s)=n=1ns1(Re(s)>1,nN+)

在复平面上的解析延拓:
ζ ( s ) = Γ ( 1 − s ) 2 π i ∫ C ( − z ) s e z − 1 d z z ζ(s)=\frac{\Gamma(1-s)}{2\pi i}\int_{C}^{}\frac{(-z)^{s}}{e^{z}-1}\frac{dz}{z} ζ(s)=2πiΓ(1s)Cez1(z)szdz

式中的 Γ Γ Γ 函数 Γ ( s ) Γ(s) Γ(s) 是阶乘函数在复平面上的推广, 对于正整数 s > 1 : Γ ( s ) = ( s − 1 ) ! s>1:Γ(s)=(s-1)! s>1Γ(s)=(s1)! 可以证明,这一积分表达式除了在 s = 1 s=1 s=1 处有一个简单极点外在整个复平面上解析。这就是黎曼 ζ ζ ζ 函数的完整定义。
运用上面的积分表达式可以证明,黎曼ζ 函数满足以下代数关系式:
ζ ( s ) = 2 s π s − 1 sin ⁡ π s 2 Γ ( 1 − s ) ζ ( 1 − s ) \zeta(s)=2^{s}\pi^{s-1}\sin\frac{\pi s}{2}\Gamma(1-s)\zeta(1-s) ζ(s)=2sπs1sin2πsΓ(1s)ζ(1s)

从这个关系式中不难发现,黎曼 ζ ζ ζ 函数在 s = − 2 k ( k 为 正 整 数 ) s=-2k ( k 为正整数) s=2k(k) 取值为零—因为 sin ⁡ ( π s / 2 ) \sin(πs/2) sin(πs/2) 为零。复平面上的这种使黎曼 ζ ζ ζ 函数取值为零的点被称为黎曼 ζ ζ ζ 函数的零点。因此 s = − 2 k ( k 为 正 整 数 ) s=-2k (k 为正整数) s=2k(k) 是黎曼 ζ ζ ζ 函数的零点。这些零点分布有序、 性质简单, 被称为黎曼 ζ \zeta ζ函数的平凡零点 ( t r i v i a l z e r o ) (trivial zero) (trivialzero) 。除了这些平凡零点外,黎曼 z e t a zeta zeta 函数还有许多其它零点, 它们的性质远比那些平凡零点来得复杂,被称为非平凡零点 (non-trivial zeros) .

黎曼猜想提出
黎曼ζ 函数的所有非平凡零点都位于复平面上 R e ( s ) = 1 / 2 Re(s)=1/2 Re(s)=1/2 的直线上,也即方程 ζ ( s ) = 0 ζ(s)=0 ζ(s)=0的解的实部都是 1 / 2 1/2 1/2 .

2. 2. 2. 下面来阐述黎曼 ζ \zeta ζ 函数没有零点:

1 ) 1) 1) 黎曼 ζ \zeta ζ 函数的平凡零点不存在

ζ ( s ) = 2 s π s − 1 sin ⁡ π s 2 Γ ( 1 − s ) ζ ( 1 − s ) \zeta(s)=2^{s}\pi^{s-1}\sin\frac{\pi s}{2}\Gamma(1-s)\zeta(1-s) ζ(s)=2sπs1sin2πsΓ(1s)ζ(1s)

有人以为 s = − 2 k s=-2k s=2k ( k k k 为正整数),是黎曼 ζ ( s ) \zeta(s) ζ(s)函数的零点,这是错误的;

ζ ( s ) = ∑ n = 1 ∞ 1 n s = ∑ n = 1 ∞ n 2 k = ∞ ≠ 0 ζ(s) = \sum_{n=1}^{ \infty} {\frac{1}{n^{s}}}=\sum_{n=1}^{\infty}{}n^{2k}=\infty\ne0 ζ(s)=n=1ns1=n=1n2k==0

虽然 s = − 2 k s=-2k s=2k , k k k 为正整数时, sin ⁡ ( − k π ) = 0 , \sin (-k\pi)=0 , sin(kπ)=0, ζ ( s ) ≠ 0 , ζ(s)≠0 , ζ(s)=0说明解析延拓后与原函数不等价,也不是包含关系。解析延拓后的 15 15 15亿个零点解 ζ ( 1 / 2 + i t ) = 0 \zeta(1/2+it)=0 ζ(1/2+it)=0 不是原函数 ζ ( s ) = 0 \zeta(s)=0 ζ(s)=0的解。

s = 2 k s=2k s=2k , k k k 为正整数时, sin ⁡ ( k π ) = 0 , \sin(k\pi)=0 , sin(kπ)=0按此来说 ζ ( 2 k ) = 0 , \zeta(2k)=0 , ζ(2k)=0 也是它的零点,而 ζ ( 2 ) = π 2 / 6 , \zeta(2)=\pi^{2}/6 , ζ(2)=π2/6他们却避而不谈,解释为零点抵消了。平凡零点捏造出来的,而且不能自圆其说。

错误源自解析延拓:
ζ ( − 1 ) = 1 + 2 + 3 + 4 + ⋯ = − 1 / 12 , \zeta(-1)=1+2+3+4+\cdots=-1/12, ζ(1)=1+2+3+4+=1/12,

ζ ( 0 ) = 1 + 1 + 1 + ⋯ = − 1 / 2 , \zeta(0)=1+1+1+\cdots=-1/2 , ζ(0)=1+1+1+=1/2,

黎曼猜想的平凡零点不存在

用解析延拓(物理学上的重正规化)来掩盖错误,熟视无睹也被熟视无睹。

错误起因源自: S = 1 − 1 + 1 − 1 + 1 − ⋯ = 1 / 2 , S=1-1+1-1+1-\cdots=1/2, S=11+11+1=1/2这是欧拉推导出的。
S = 1 − ( 1 − 1 + 1 − ⋯   ) = 1 − S ⇒ S = 1 / 2 S=1-(1-1+1-\cdots)=1-S\Rightarrow S=1/2 S=1(11+1)=1SS=1/2

S 1 = 1 − 2 + 3 − 4 + ⋯ − ⋯ S_{1}=1-2+3-4+\cdots-\cdots S1=12+34+
2 S 1 = { 1 − 2 + 3 − 4 + 5 − 6 + 7 − ⋯ + 1 − 2 + 3 − 4 + 5 − 6 + ⋯ 2S_{1}=\begin{cases} 1-&2+3-4+5-6+7-\cdots & \\ +&1-2+3-4+5-6+\cdots & \end{cases} 2S1={ 1+2+34+56+712+34+56+ = S = 1 / 2 =S=1/2 =S=1/2

所以, S 1 = 1 / 4 S_{1}=1/4 S1=1/4
S 2 = 1 + 2 + 3 + 4 + ⋯ S_{2}=1+2+3+4+\cdots S2=1+2+3+4+
S 1 − S 2 = { + 1 − 2 + 3 − 4 + 5 − 6 + 7 − ⋯ − 1 − 2 − 3 − 4 − 5 − 6 − 7 − ⋯ S_{1}-S_{2}=\begin{cases} +1-2+3-4+5-6+7-\cdots & \\- 1-2-3-4-5-6-7-\cdots & \end{cases} S1S2={ +12+34+56+71234567 = − 4 S 2 =-4S_{2} =4S2

⇒ S 2 = − 1 / 12 \Rightarrow S _{2}=-1/12 S2=1/12

所以有荒唐的结论
1 + 2 + 3 + 4 + ⋯ = − 1 / 12 1+2+3+4+\cdots =-1/12 1+2+3+4+=1/12
(权威说这里面有我们不知道的秘密:宇宙的秘密)
显然是伪证
S = 1 ⇒ 1 + 2 + 3 + ⋯ = − 1 / 6 S=1\Rightarrow1+2+3+\cdots =-1/6 S=11+2+3+=1/6
S = 0 ⇒ 1 + 2 + 3 + ⋯ = 0 S=0\Rightarrow1+2+3+\cdots =0 S=01+2+3+=0

按延拓后的 ζ \zeta ζ 函数计算也有
ζ ( − 1 ) = − 1 / 12 , \zeta(-1)=-1/12, ζ(1)=1/12,
ζ ( 0 ) = − 1 / 2 , \zeta(0)=-1/2, ζ(0)=1/2,
ζ ( − 2 ) = 0 , \zeta(-2)=0, ζ(2)=0,
ζ ( − 3 ) = 1 / 120 , \zeta(-3)=1/120, ζ(3)=1/120,
ζ ( − 4 ) = 0 ; \zeta(-4)=0; ζ(4)=0;
又有:
S = ( 1 − 1 ) + ( 1 − 1 ) + ( 1 − 1 ) + ⋯ = 0 S=(1-1)+(1-1)+(1-1)+\cdots=0 S=(11)+(11)+(11)+=0
S = 1 − ( 1 − 1 ) − ( 1 − 1 ) − ( 1 − 1 ) − ⋯ = 1 S=1-(1-1)-(1-1)-(1-1)-\cdots=1 S=1(11)(11)(11)=1
⇒ S = 1 = 0 \Rightarrow S=1=0 S=1=0
⇒ 1 = 0 \Rightarrow1=0 1=0

由极限的唯一性知发散级数不能收敛于任何确定值。即:

S ≠ 1 / 2 ≠ 1 ≠ 0 S\ne1/2\ne1\ne0 S=1/2=1=0

然而,我们在教科书上常看到某级数发散于某值的低级错误。
比如,设 U = 1 + 2 + 3 + . . . + n + ⋯ U=1+2+3+...+n+\cdots U=1+2+3+...+n+ 我们来看看发散级数重排的后果:

0 = U − 2 U + U = ( 1 + 2 + 3 + 4 + . . . ) + ( 0 − 2 − 4 − 6 − . . . ) + ( 0 + 0 + 1 + 2 + . . . ) = 1 + 0 + 0 + 0 + . . . = 1 \begin{aligned}0=&U-2U+U\\=&(1+2+3+4+...) +\\&(0-2-4-6-...)+\\&(0+0+1+2+...)\\=&1+0+0+0+...\\=&1\end{aligned} 0====U2U+U(1+2+3+4+...)+(0246...)+(0+0+1+2+...)1+0+0+0+...1

1 = 0 , 1=0, 1=0我们能得到任何想要的结论!
所以 ζ ( 1 / 2 + i t ) = 0 \zeta(1/2+it)=0 ζ(1/2+it)=0 的非平凡解就荒唐得有理了。

黎曼在求得解析式的过程中定义了(假定了)辅助函数 ξ ( s ) = ξ ( 1 − s ) \xi(s)=\xi(1-s) ξ(s)=ξ(1s) 这本质上就是 s = 1 / 2 , s=1/2, s=1/2, 黎曼的假设可能源于此。这也内蕴了后面的错误!

原本欧拉知道 S = 1 / 2 S=1/2 S=1/2 是错误的(只是开个玩笑),黎曼还用解析延拓的方法证明它是对的。且被物理学用之为重正规化(听着就炫吧),将发散级数赋予一个确定的值。看似奇妙地将不合理变为合理,也使得量子场论有了“严格的”基础。然而数学推理上的含糊性是不能理所当然地做为物理学的现象与实验的证据的。有矛盾必有错误!

一句话:
(重正规化—级数重排)将发散级数赋予一个确定的值, S = a = b , a ≠ b , ⇒ 1 = 0 S=a=b,a\ne b,\Rightarrow1=0 S=a=b,a=b,1=0是黎曼解析延拓错误的内在原因!也是高深莫测的量子理论“合理化”的证据!
难怪爱因斯坦与玻尔的量子之诤至死方休。没搞懂才争论,科学是不必争论的。

2 ) 2) 2) 由黎曼ζ函数在复平面上 s s s 的实部 R e ( s ) ≤ 1 Re(s)\leq1 Re(s)1 的区域级数发散可知: ζ ( s ) ≠ 0 \zeta(s)\ne0 ζ(s)=0

ζ ( s ) = ∑ n = 1 ∞ 1 n s = ± ∞ ≠ 0 ( R e ( s ) ≤ 1 , n ∈ N + ) ζ(s) =\sum_{n=1}^{\infty}{\frac{1}{n^{s}}}=\pm\infty\ne0\left( Re(s)\leq1,n\in \mathbb{N}^{+} \right) ζ(s)=n=1ns1=±=0(Re(s)1,nN+)

s = 1 / 2 + i t ( t ∈ R ) s=1/2+it (t\in\mathbb R) s=1/2+it(tR) 时, ζ ( 1 / 2 + i t ) \zeta(1/2+it) ζ(1/2+it) 是发散的,不可能收敛为零。
ζ ( s ) = 0 ζ(s)=0 ζ(s)=0 就是收敛值零,这是不可能的,是矛盾的。
从这一点来说,黎曼的论文是在很短的时间内仓促而就的。许多证明从略的地方并非深思熟虑。天才也有打盹的时候,但后人不该盲目。

3 ) 3) 3) 由欧拉乘积公式可知: ζ ( s ) ≠ 0 \zeta(s)\ne0 ζ(s)=0

ζ ( s ) = ∑ n = 1 ∞ 1 n s = ∏ p 1 1 − 1 p s = 2 s 2 s − 1 3 s 3 s − 1 5 s 5 s − 1 ⋯ p s p s − 1 ⋯ ζ(s) =\sum_{n=1}^{\infty}{\frac{1}{n^{s}}}=\prod_{p}^{}\frac{1}{1-\frac{1}{p^{s}}}=\frac{2^{s}}{2^{s}-1}\frac{3^{s}}{3^{s}-1}\frac{5^{s}}{5^{s}-1}\cdots\frac{p^{s}}{p^{s}-1}\cdots ζ(s)=n=1ns1=p1ps11=2s12s3s13s5s15sps1ps

s s s 是实数时: ζ ( s ) > 1 \zeta(s)>1 ζ(s)>1

2 s 2 s − 1 > 1 , 3 s 3 s − 1 > 1 , ⋅ ⋅ ⋅ , p s p s − 1 > 1 , ⋅ ⋅ ⋅ ⇒ ζ ( s ) > 1 \frac{2^{s}}{2^{s}-1}>1,\frac{3^{s}}{3^{s}-1}>1,\cdot\cdot\cdot,\frac{p^{s}}{p^{s}-1}>1,\cdot\cdot\cdot\Rightarrow\zeta(s)>1 2s12s>1,3s13s>1,,ps1ps>1,ζ(s)>1

s

  • 2
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 2
    评论
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值