黎曼猜想的平凡零点不存在

伯努利数

( 1 ) ∑ x = 1 n x = 1 + 2 + 3 + ⋯ + n = n ( n + 1 ) 2 (1)\sum_{x=1}^{n}{x}=1+2+3+\cdots+n=\frac{n(n+1)}{2} (1)x=1nx=1+2+3++n=2n(n+1)
∫ − 1 0 x ( x + 1 ) 2 d x = − 1 12 \int_{-1}^{0} \frac{x(x+1)}{2}dx=-\frac{1}{12} 102x(x+1)dx=121

∫ 0 1 x ( x − 1 ) 2 d x = − 1 12 \int_{0}^{1} \frac{x(x-1)}{2}dx=-\frac{1}{12} 012x(x1)dx=121

并不是
ζ ( − 1 ) = 1 + 2 + ⋯ + n + ⋯ = − 1 12 \zeta(-1)=1+2+\cdots+n+\cdots=-\frac{1}{12} ζ(1)=1+2++n+=121

( 2 ) : ∑ x = 1 n x 2 = 1 2 + 2 2 + ⋯ + n 2 = n ( n + 1 ) ( 2 n + 1 ) 6 (2):\sum_{x=1}^{n}{x^2}=1^2+2^2+\cdots+n^2=\frac{n(n+1)(2n+1)}{6} (2):x=1nx2=12+22++n2=6n(n+1)(2n+1)
∫ − 1 0 x ( x + 1 ) ( 2 x + 1 ) 6 d x = 0 \int_{-1}^{0}\frac{x(x+1)(2x+1)}{6}dx=0 106x(x+1)(2x+1)dx=0

∫ 0 1 x ( x − 1 ) ( 2 x − 1 ) 6 d x = 0 \int_{0}^{1}\frac{x(x-1)(2x-1)}{6}dx=0 016x(x1)(2x1)dx=0

并不是
ζ ( − 2 ) = 1 2 + 2 2 + ⋯ + n 2 + ⋯ = 0 \zeta(-2)=1^2+2^2+\cdots+n^2+\cdots=0 ζ(2)=12+22++n2+=0

所谓平凡零点

( 3 ) : ∑ x = 1 n x 3 = 1 3 + 2 3 + ⋯ + n 3 = n 2 ( n + 1 ) 2 4 (3):\sum_{x=1}^{n}{x^3}=1^3+2^3+\cdots+n^3=\frac{n^2(n+1)^2}{4} (3):x=1nx3=13+23++n3=4n2(n+1)2
∫ − 1 0 x 2 ( x + 1 ) 2 4 d x = 1 120 \int_{-1}^{0}\frac{x^2(x+1)^2}{4}dx=\frac{1}{120} 104x2(x+1)2dx=1201

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值