黎曼猜想简介

世界七大数学难题, 是七个由美国克雷数学研究所(Clay Mathematics Institute,CMI) 于2000年5月24日公布的数学猜想。包括NP完全问题、霍奇猜想、庞加莱猜想、黎曼猜想、杨-米尔斯存在性和质量缺口、纳维-斯托克斯方程、BSD猜想。其中庞加莱猜想已被解决。这些难题是呼应1900年德国数学家大卫·希尔伯特在巴黎提出的23个数学问题,黎曼猜想是23个中唯一一个没被解决的。

1.在实数范围内:

黎曼函数如下表示,在实部大于1下,黎曼函数才收敛。
在这里插入图片描述

2.解析延拓至复数范围

黎曼函数如下表示(在s的实部不是大于1的时候)
在这里插入图片描述

3.黎曼函数等于0的情况

我们考虑黎曼函数等于0的情况,即
在这里插入图片描述

此外,在这里插入图片描述

从这个关系式中不难发现,黎曼ζ 函数在 s=-2n (n 为正整数) 取值为零 - 因为 sin(πs/2) 为零 。这些零点分布有序、 性质简单, 被称为黎曼ζ 函数的平凡零点 (trivial zero)。除了这些平凡零点外,黎曼ζ 函数还有许多其它零点, 它们的性质远比那些平凡零点来得复杂, 被称为非平凡零点 (non-trivial zeros)。

4.黎曼猜想

黎曼猜想:黎曼ζ 函数的所有非平凡零点都位于复平面上 Re(s)=1/2 的直线上,也即方程ζ(s)=0的解的实部都是1/2。

数学家们把复平面上 Re(s)=1/2 的直线称为 critical line(临界线)。运用这一术语,黎曼猜想也可以表述为:黎曼ζ 函数的所有非平凡零点都位于 critical line 上。

5.黎曼猜想与素数定理

素数定理(prime number theorem)是素数分布理论的中心定理,是关于素数个数问题的一个命题: 设x≥1,以π(x)表示不超过x的素数的个数,当x→∞时,π(x)~x/ln(x)。

通过黎曼猜想可以证明素数定理。

1949年,塞尔伯格(即阿特勒·塞尔伯格,Atle Selberg)和埃尔德什(即保罗·埃尔德什,Paul Erdős)分别独立地证明了素数定理。与以往证明不同的是,他们没有用到ζ函数,而且除了极限、指数函数、对数函数的简单性质外,没有用到任何高等数学知识,甚至连微积分都没用到。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI强仔

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值