监督学习和非监督学习的区别

本文介绍了机器学习中的基本任务类型:分类与回归,这两种任务旨在预测连续或离散的目标值;此外还探讨了聚类这一非监督学习任务,它帮助我们发现数据内在的规律。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

    如果我们想要预测的是离散值,例如“好瓜”“坏瓜”,此类学习任务称为“分类”;如果想要预测的是连续值,例如西瓜成熟度0.95、0.37,此类学习任务称为“回归”。

    学得模型后,使用其进行预测的过程称为“测试”,被预测的样本成为“测试样本”。例如在学得f后,对测试例x,可得到其预测标记y=f(x)。

    我们还可以对西瓜做“聚类”,即将训练集中的西瓜分为若干组,每组称为一个“”;这些自动形成的簇可能对应一些潜在的概念划分,例如“浅色瓜”“深色瓜”,甚至“本地瓜”“外地瓜”。这样的学习过程有助于我们了解数据内在的规律,能为更深入地分析数据简历基础。需说明的是,在聚类学习中,“浅色瓜”“本地瓜”这样的概念我们事先是不知道的,而且学习过程中使用的训练样本通常不拥有标记信息。

    根据训练数据是否拥有标记信息,学习任务可大致分为两大类:“监督学习”和“非监督学习”,分类和回归是前者的代表,而聚类是后者的代表。再解释一下,监督学习其实就是我们对输入样本经过模型训练后有明确的预期输出,非监督学习就是我们对输入样本经过模型训练后得到什么输出完全没有预期。结合西瓜的例子,监督学习就是我们知道经过模型训练后会分为好瓜或者坏瓜,而非监督学习则会将西瓜聚类为几种我们之前没有明确定义的瓜,如“浅色瓜”“外地瓜”。

    这样结合西瓜的例子解释后,相信你能对经常听到的监督学习和非监督学习两个概念有了比较清晰的了解。


### 人工智能与机器学习的关系 人工智能(AI)是一门研究如何创建具有智能行为的计算机系统的学科。这涵盖了广泛的领域技术,其中包括但不限于机器学习、自然语言处理、机器人学等[^1]。 #### 机器学习作为人工智能的一部分 机器学习是人工智能的一个子集,专注于开发能够通过数据自动改进其性能而不需显式编程的算法。这类技术允许系统基于经验自我优化,在面对新情况时做出更优决策或预测[^2]。 --- ### 不同方法间的区别与联系 #### 无监督学习 vs. 监督学习中的几种模型 - **无监督学习**是指当训练样本没有标签信息时所采用的学习方式;它试图从未标注的数据集中发现模式并提取有用特征。常见的例子有聚类分析支持向量描述。 - 对比之下,像决策树、KNN这样的分类器属于监督学习范畴——即给定带有类别标记的历史案例来构建预测模型。其中, - **决策树**是一种树形结构化的方法论,用于映射观察到的结果以帮助做决定; - **K最近邻(KNN)**则依赖于距离度量寻找最相似实例来进行推断. ```python from sklearn.tree import DecisionTreeClassifier clf = DecisionTreeClassifier() ``` ```python from sklearn.neighbors import KNeighborsClassifier knn = KNeighborsClassifier(n_neighbors=3) ``` #### 神经网络的独特之处 神经网络模仿生物神经系统工作原理设计而成的人工计算架构,特别擅长捕捉复杂非线性关系,并且可以应用于图像识别等领域。多层感知机就是一种简单的前馈型人工神经网路形式. ```python import tensorflow as tf model = tf.keras.models.Sequential([ tf.keras.layers.Dense(128, activation='relu'), tf.keras.layers.Dropout(0.2), tf.keras.layers.Dense(10) ]) ``` #### 专家系统的特殊定位 不同于上述统计建模驱动的方式,**专家系统**依靠人类专业知识编码成规则库的形式运作,旨在模拟特定领域的高级专业人员解决问题的能力。尽管如此,随着深度学习的发展,某些情况下也可以看到两者融合的趋势出现.
评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值