OpenCV__Python 直线检测Hough_教程21

#引入opencv模块
import cv2 as cv
#引入numpy模块
import numpy as np
#引入sys模块
import sys


#line
def line_detection(img):
    blurred = cv.GaussianBlur(img,(5,5),0)
    gray = cv.cvtColor(blurred,cv.COLOR_BGR2GRAY)
    edge_output = cv.Canny(gray,50,150,apertureSize=3)
    cv.namedWindow("canny_direct_edge",cv.WINDOW_NORMAL)
    cv.imshow("canny_direct_edge",edge_output)
    lines = cv.HoughLines(edge_output,1,np.pi/180,200)
    for line in lines:
        rho,theta = line[0]
        a = np.cos(theta)
        b = np.sin(theta)
        x0 = a*rho
        y0 = b*rho
        x1 = int(x0 + 1000*(-b))
        y1 = int(y0 + 1000*(a))
        x2 = int(x0 - 1000*(-b))
        y2 = int(y0 - 1000*(a))
        cv.line(img,(x1,y1),(x2,y2),(0,255,255),2)
    cv.namedWindow("lines_img",cv.WINDOW_NORMAL)
    cv.imshow("lines_img",img)



#line
def line_detection_possible(img):
    blurred = cv.GaussianBlur(img,(5,5),0) 
    gray = cv.cvtColor(blurred,cv.COLOR_BGR2GRAY)
    edge_output = cv.Canny(gray,50,150,apertureSize=3)
    cv.namedWindow("canny_direct_edge_P",cv.WINDOW_NORMAL)
    cv.imshow("canny_direct_edge_P",edge_output)
    lines = cv.HoughLinesP(edge_output,1,np.pi/180,100,minLineLength=50,maxLineGap=10)
    for line in lines:
        x1,y1,x2,y2 = line[0]
        cv.line(img,(x1,y1),(x2,y2),(0,255,255),2)
    cv.namedWindow("lines_img_P",cv.WINDOW_NORMAL)
    cv.imshow("lines_img_P",img)


def img_test():
    img = cv.imread('E:/chenopencvblogimg/road2.jpg')
    #判断是否读取成功
    if img is None:
        print("Could not read the image,may be path error")
        return
    cv.namedWindow("origin Pic",cv.WINDOW_NORMAL)
    cv.imshow("origin Pic",img)
    line_detection(img)
    line_detection_possible(img)

    #让显示等待键盘输入维持在那里,否则程序跑完就闪退啦!
    cv.waitKey(0)
    #销毁窗口
    cv.destroyAllWindows()

if __name__ == '__main__':
    sys.exit(img_test() or 0)

PythonOpenCV库中,`hough_ellipse`函数是一个用于检测图像中的椭圆轮廓的方法。Hough变换是一种在图像处理中寻找特定形状(如直线、圆形等)的方法。当你想要检测图像中的椭圆时,`cv2.HoughCircles`函数实际上就是用来做这个的,但是它是针对圆形的,而`hough_ellipse`则是OpenCV早期版本中专为椭圆设计的。 `cv2.HoughEccentricityImage`函数会首先计算出输入图像中每个像素点周围可能存在椭圆的可能性,并返回一个概率图。然后,你可以通过调用`cv2.findContours`找到概率图中的峰值,这些峰值代表了椭圆中心的位置和大小信息。最后,`cv2.fitEllipse`会被用来拟合这些点得到最终的椭圆。 示例代码可能会像这样: ```python import cv2 import numpy as np # 加载图像 image = cv2.imread('image.jpg', cv2.IMREAD_GRAYSCALE) # 检测椭圆 edges = cv2.Canny(image, threshold1=50, threshold2=150) min_radius, max_radius = 10, image.shape[0] // 4 accumulator = np.zeros_like(image) # 进行Hough椭圆检测 cv2.HoughEccentricityImage(edges, accumulator, dp=1, minDist=20, param1=100, param2=30, minRadius=min_radius, maxRadius=max_radius) # 寻找椭圆 contours, _ = cv2.findContours(accumulator, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) for contour in contours: ellipse = cv2.fitEllipse(contour) cv2.ellipse(image, ellipse, (0, 0, 255), 2) # 显示结果 cv2.imshow("Detected Ellipses", image) cv2.waitKey(0) cv2.destroyAllWindows() ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值