动态图(Eager)和数据集(tf.data)

一 动态图
动态图是相对于静态图而言的。所谓的动态图是指在python中代码被调用后,其操作立即被执行的计算。其与静态图最大的区别是不需要使用session来建立会话了。即在静态图中,需要在会话中调用run方法才可以获得某个张量的具体值:而在动态图中,直接运行就可以得到具体值了。
动态图TensorFlow 1.3版本之后才出现的。它使TensorFlow的入门变得更简单,也使研发更直观。
启动动态图只需要在程序的最开始处加上两行代码:
import tersorflow.contrib.eager as tfe
tfe.enable_eager_execution()
这两行代码的作用就是开启动态图计算功能。例如,调用tf.matmul时,将会立即计算两个数相乘的值,而不是一个op
Eager还处于一个试用阶段,也是TensorFlow大力推广的新特效,未来或许会成为趋势。
在创建动态图的过程中,默认也建立一个session。所有的代码都在该session中进行,而且该session具有进程相同的生命周期。这表明一旦使用动态图就无法实现静态图中关闭session的功能。这是动态图的不足之处:无法实现多session操作。如果当前代码只需要一个session来完成的话,建议优先选择动态图Eager来实现。

二 数据集
TensorFlow中有3中数据输入模式:
  • 直接使用feed_dict利用注入模式进行数据输入,适用于少量的数据集输入;
  • 使用队列式管道,适用于大量的数据集输入;
  • 性能更高的输入管道,使用与TensorFlow 1.4之后的版本,是为动态图功能提供大数据输入方案(动态图数据集输入只能使用该方法),当然也支持静态图。
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: 这个错误提示意味着您正在使用启用了 Eager Execution 的 TensorFlow 版本,并且尝试使用 `tf.gradients` 函数来计算梯度。然而,在 Eager Execution 模式下,`tf.gradients` 函数不受支持。 相反,您应该使用 `tf.GradientTape` 类来计算梯度。`tf.GradientTape` 提供了一种基于操作记录的方法来计算梯度,这与 TensorFlow 1.x 版本中的计算方式非常不同。 以下是使用 `tf.GradientTape` 计算梯度的基本示例: ``` python import tensorflow as tf x = tf.constant(3.0) with tf.GradientTape() as tape: tape.watch(x) y = x * x dy_dx = tape.gradient(y, x) print(dy_dx) # Output: tf.Tensor(6.0, shape=(), dtype=float32) ``` 在此示例中,我们首先定义了一个常量 `x`,然后创建了一个 `tf.GradientTape` 对象。在 `with` 块中,我们使用 `tape.watch()` 方法告诉 TensorFlow 记录变量 `x` 的操作。接下来,我们定义了一个计算 `y` 的操作,并使用 `tape.gradient()` 方法计算 `y` 对 `x` 的梯度。 注意,由于 `dy_dx` 是一个张量,因此您可能需要使用 `dy_dx.numpy()` 将其转换为 NumPy 数组或 `float()` 将其转换为 Python 浮点数。 希望这可以帮助您解决问题! ### 回答2: tf.gradients 是 TensorFlow 中用于求导的函数之一,它可以根据给定的目标函数和自变量,计算目标函数对自变量的偏导数,属性包括 gradients 函数的返回值以及计算所需的的上下文。 然而,在启用 Eager Execution 时,tf.gradients 不再受支持。Eager Execution 是 TensorFlow 的一种运行模式,它允许一条命令立即运行并返回结果,而不是构建计算并在会话中运行。由于 Eager Execution 的实时计算特性,导致在程序运行期间无法获得 Python 对象的形表示,因此对于 tf.gradients 的操作无法兼容。 在这种情况下,使用的替代方案是 tf.GradientTape。tf.GradientTape 是一个记录计算过程的上下文管理器,它跟踪在其中定义的操作,并随情况自动构建衍生,以便计算梯度。通过计算衍生,它提供了许多有用的类和方法,并使用 Python 原生控制流构造了可微计算。使用 tf.GradientTape 可以处理复杂的连续梯度计算,它不需要预定静态的计算,不需要处于同一范围,甚至可以反复重复使用它。 因此,对于 TensorFlow 社区的用户,使用 tf.GradientTape 来替代 tf.gradients 是一个 更加合适和动态的求导方式。这种方法不仅适用于 Eager Execution 模式,而且在静态计算模式下也适用。 ### 回答3: tf.gradients是TensorFlow中非常有用的函数之一,它可以计算某个标量(如损失函数)对模型参数的梯度。然而,当使用eager execution时,这个函数不再被支持,这给一些用户带来了些许不便。 Eager execution是TensorFlow中的一种执行模式,它使得在计算流程中可以立即得到结果而不需要建立静态计算。它之所以强调动态性,是因为它带来了许多的好处,如更容易进行调试、更好的交互性,更加的可读性等等。例如,在执行一个训练操作时,运行训练前先运行一个梯度计算是一个很常见的操作,但是在eager execution模式下就不能这么做了。这是因为tf.gradients在计算梯度时需要建立计算,在eager execution模式下这个是不存在的。 为了解决这个问题,TensorFlow引入了一个新的类GradientTape,在这个环境下可以实时计算各种更高级别的梯度张量。事实上,GradientTape比起tf.gradients具有更多的优点。首先,它可以更加自然地工作,即不需要构建计算来计算导数。其次,GradinetTape是一个“响应式”环境,它能自动跟踪计算并记录完成的操作,从而充分发挥出TensorFlow强大的计算表达能力。 在使用GradientTape时,可以利用其中的gradient函数,这个函数可以根据某一张量、标量或者一个list等求出它们对于原来的张量求导之后的导数。在理解完GradientTape的使用之后,再去尝试使用tf.gradients会感到有些啰嗦。所以,虽然在eager execution模式下tf.gradients不能使用,但是非常优秀的GradientTape可以完美代替所有算法涉及到的梯度求导需求。 总之,虽然因为eager execution的引入使得一些已有的操作失效了,但是所带来的新特性和更加灵活的数据流程是TensorFlow发展过程中非常必要的一步。对于新手而言,熟练掌握GradientTape是非常有必要的基础知识。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值