P20 PyTorch 反向传播算法

前言:

反向传播是深度学习的基础核心,如果掌握了这个,其它的模型会很容易理解。

这里面结合前面的多层感知机,深入了解一下权重数是如何更新的


目录:

1: 多层感知机节点间的权重系数更新

2: 反向传播的基本思路

3: 整体训练流程


一 多层感知机节点间的权重系数更新

我们常见的DNN 结构

问题:

t层的权重系数如何更新求梯度呢?

上图 影响到t层j节点,j节点影响到t+1层m个节点。这里假设t+1为最后一层

前向传播公式

设损失函数

梯度更新

这里面重点看一下t-1 层到t 层 i,j 节点之间权重系数更新过程.

上面公式可以简化

其中

只跟当前层的输出有关系

通过上面可以更进一步看出梯度爆炸和梯度弥散的原理


二 反向传播的基本思路(DNN)

输入

向量x,

前向传播

损失函数

梯度更新过程: 主要利用了向量的链式求导原理,以及梯度和迹之间的关系。

假设一共L 层,

step1: 先计算最后一层

step2: 利用链式法则,递归的求出每一层的

step3: 利用梯度和迹之间的关系,求出每一层的梯度

证明:


三 整体训练流程

Train:

反向传播算法深度学习中的核心算法之一,它是用来计算神经网络中参数的梯度,并根据梯度更新参数,从而实现模型的训练。 在PyTorch中,实现反向传播算法的一般步骤如下: 1. 构建计算图:首先,需要定义神经网络模型,并将输入数据传递给模型进行前向计算,得到模型的输出结果。 2. 计算损失函数:根据模型的输出结果和标签数据,计算损失函数。PyTorch中提供了一些常用的损失函数,如交叉熵损失函数、均方误差损失函数等,可以根据具体情况进行选择。 3. 计算梯度:通过调用损失函数的backward()方法,计算损失函数对每个参数的梯度。在计算梯度之前,需要将梯度清零,以避免之前的梯度对当前梯度的影响。 4. 参数更新:根据梯度信息和优化算法,更新模型的参数。PyTorch中提供了一些常用的优化算法,如随机梯度下降、Adam等。 下面是一个简单的示例代码,实现了一个简单的全连接神经网络,并使用反向传播算法进行训练: ```python import torch import torch.nn as nn import torch.optim as optim # 定义网络模型 class Net(nn.Module): def __init__(self): super(Net, self).__init__() self.fc1 = nn.Linear(10, 5) self.fc2 = nn.Linear(5, 1) def forward(self, x): x = torch.relu(self.fc1(x)) x = self.fc2(x) return x # 定义输入数据和标签数据 inputs = torch.randn(1, 10) labels = torch.randn(1, 1) # 定义损失函数和优化算法 net = Net() criterion = nn.MSELoss() optimizer = optim.SGD(net.parameters(), lr=0.01) # 计算模型输出和损失函数 outputs = net(inputs) loss = criterion(outputs, labels) # 计算梯度并更新参数 optimizer.zero_grad() loss.backward() optimizer.step() ``` 在上面的代码中,首先定义了一个全连接神经网络模型,包含两个线性层。然后,定义了输入数据和标签数据。接着,定义了损失函数和优化算法,并将模型的参数传递给优化器。在每次训练迭代中,计算模型的输出结果和损失函数,然后使用反向传播算法计算梯度,并使用优化算法更新模型的参数。 需要注意的是,PyTorch中的反向传播算法是自动求导的,即不需要手动计算梯度,只需要通过调用backward()方法即可。另外,在每次迭代中,需要将梯度清零,否则会累加之前的梯度,导致结果不正确。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值