弧度制 - 角度制
1. 弧度制 (radian measure)
弧度制是使用弧长与半径之比度量对应圆心角角度的方式,单位是 rad
,读作弧度。1 弧度的角等于半径长的圆弧所对的圆心角。由于圆弧长短与圆半径之比,不因为圆的大小而改变,所以弧度数是一个与圆的半径无关的量。角度以弧度给出时,通常不写弧度单位。弧度制的精髓就在于统一了度量弧与角的单位。
2
π
r
a
d
=
360
°
2\pi \ rad = 360°
2π rad=360°
1
π
r
a
d
=
180
°
1\pi \ rad = 180°
1π rad=180°
1
∘
=
π
/
180
r
a
d
1^{\circ}=\pi/180 \ rad
1∘=π/180 rad
1
r
a
d
=
(
180
/
π
)
∘
≃
57.3
0
∘
≃
5
7
∘
1
8
′
1 \ rad = (180/\pi) ^{\circ} \simeq 57.30^{\circ} \simeq 57^{\circ}18'
1 rad=(180/π)∘≃57.30∘≃57∘18′
360 度表示圆周角,180 度表示平角,90 度表示直角。
圆周角表示为
2
π
2\pi
2π,平角表示为
π
\pi
π,直角表示为
π
/
2
\pi/2
π/2。
2. 角度制 (angle/degree measure)
角度制是使用度 ( ∘ ^{\circ} ∘)、分 (’)、秒 (") 来测量角的大小的制度。
周角的 360 分之一为 1 度的角,度是单位,而非1 度,单位的定义是计量事物标准量的名称。
3. 弧度制 - 角度制
正角度弧度数是一个正数,负角度弧度数是一个负数,零角度弧度数为零。