笛卡尔坐标系 {Cartesian coordinate system}
In geometry, a Cartesian coordinate system (UK: /kɑːrˈtiːzjən/, US: /kɑːrˈtiːʒən/) in a plane is a coordinate system that specifies each point uniquely by a pair of real numbers called coordinates, which are the signed distances to the point from two fixed perpendicular oriented lines, called coordinate lines, coordinate axes or just axes of the system. The point where they meet is called the origin and has
(
0
,
0
)
(0, 0)
(0,0) as coordinates.
在数学中,笛卡尔坐标系 (Cartesian coordinate system) 是一种正交坐标系,亦称为直角坐标系。二维的直角坐标系是由两条相互垂直、相交于原点的数线构成的。在平面内,任何一点的坐标是根据数轴上对应的点的坐标设定的。
perpendicular [ˌpɜː(r)pənˈdɪkjʊlə(r)]:adj. 垂直的,成直角的 n. 垂直线
axis ['æksɪs]:n. 坐标轴,轴,对称中心线 (复数:axes)
采用直角坐标,几何形状可以用代数公式明确地表达出来。几何形状的每一个点的直角坐标必须遵守这个代数公式。直线标准式 (一般式) a x + b y + c = 0 ax + by + c = 0 ax+by+c=0、斜截式 y = m x + k y = mx + k y=mx+k。以点 ( a , b ) (a, b) (a,b) 为圆心, r r r 为半径的圆可以用 ( x − a ) 2 + ( y − b ) 2 = r 2 (x - a)^{2} + (y - b)^{2} = r^{2} (x−a)2+(y−b)2=r2 表示。
Cartesian coordinate system with a circle of radius 2 centered at the origin marked in red. The equation of a circle is ( x − a ) 2 + ( y − b ) 2 = r 2 (x - a)^{2} + (y - b)^{2} = r^{2} (x−a)2+(y−b)2=r2 where a a a and b b b are the coordinates of the center ( a , b ) (a, b) (a,b) and r r r is the radius.
图 1. 红色的圆,半径是 2,圆心位于直角坐标系的原点。圆的方程为
x
2
+
y
2
=
4
x^2 + y^2 = 4
x2+y2=4。
1. 二维坐标系统
The origin is often labeled
O
O
O, and the two coordinates are often denoted by the letters
X
X
X and
Y
Y
Y, or
x
x
x and
y
y
y. The axes may then be referred to as the
X
X
X-axis and
Y
Y
Y-axis.
二维的直角坐标系通常由两个互相垂直的坐标轴设定,通常分别称为
x
x
x-轴和
y
y
y-轴。两个坐标轴的相交点称为原点,通常标记为
O
O
O,既有零的意思,又是英语 Origin 的首字母。每一个轴都指向一个特定的方向。这两个不同线的坐标轴,决定了一个平面,称为
x
y
xy
xy-平面,又称为笛卡尔平面。
习惯性地, x x x-轴被水平摆放称为横轴,通常指向右方。 y y y-轴被竖直摆放而称为纵轴,通常指向上方。两个坐标轴这样的位置关系称为二维的右手坐标系,或右手系。
如果把这个右手系画在一张透明纸片上,则在平面内无论怎样旋转它,所得到的都叫做右手系。如果把纸片翻转,其背面看到的坐标系则称为左手系。
图 2. 直角坐标系。图中四点的坐标分别为绿点:
(
2
,
3
)
(2, 3)
(2,3),红点:
(
−
3
,
1
)
( -3, 1)
(−3,1),蓝点:
(
−
1.5
,
−
2.5
)
(-1.5, -2.5)
(−1.5,−2.5),紫点:
(
0
,
0
)
(0, 0)
(0,0)。
从原点开始,往坐标轴所指的方向,每隔一个单位长度,就刻画数值于坐标轴。这数值是刻画的次数,也是离原点的正值整数距离。同样地,背着坐标轴所指的方向,我们也可以刻画出离原点的负值整数距离。称 x x x-轴刻画的数值为 x x x-坐标,又称横坐标,称 y y y-轴刻画的数值为 y y y-坐标,又称纵坐标。按照比例,我们可以推广至实数坐标和其所对应的坐标轴的每一个点。
1.1. Quadrants and octants (象限与卦限)
quadrant [ˈkwɒdrənt]:n. 象限,象限仪,四分之一圆
octant ['ɒktənt]:n. 八分圆,八分区,卦限,八分仪
任何一个点 P P P 在平面的位置,可以用直角坐标来表达。只要从点 P P P 画一条垂直于 x x x-轴的直线。从这条直线与 x x x-轴的相交点,可以找到点 P P P 的 x x x-坐标。同样地,可以找到点 P P P 的 y y y-坐标。图 3,点 P P P 的直角坐标是 ( 3 , 5 ) (3, 5) (3,5)。
图 3. 直角坐标系的四个象限,按照逆时针方向,从象限
I
I
I 到象限
I
V
IV
IV。坐标轴的头部象征着,往所指的方向,无限的延伸。
直角坐标系的两个坐标轴将平面分成了四个部分,称为象限,分别用罗马数字编号为 I ( + , + ) I\ (+, +) I (+,+), I I ( − , + ) II\ ( -, +) II (−,+), I I I ( − , − ) III (-, - ) III(−,−), I V ( + , − ) IV (+, - ) IV(+,−)。依照惯例,象限 I I I 的两个坐标都是正值;象限 I I II II 的 x x x-坐标是负值, y y y-坐标是正值;象限 I I I III III 的两个坐标都是负值的;象限 I V IV IV 的 x x x-坐标是正值, y y y-坐标是负值。所以象限的编号是按照逆时针方向,从象限 I I I 编到象限 I V IV IV。
1.2. 二维空间
直角坐标系的 x x x-轴与 y y y-轴必须相互垂直。正值的 x x x-轴横地指向右方,正值的 y y y-轴纵地指向上方。这种取向称为正值取向、标准取向或右手取向。
右手定则是一种常用的记忆方法,专门用来辨认正值取向:将一只半握拳的右手放在平面上,大拇指往上指,其它的手指都从 x x x-轴指向 y y y-轴。
左手定则专门用来辨认负值取向或左手取向:将一只半握拳的左手放在 x y xy xy-平面上,大拇指往上指,其它的手指都从 y y y-轴指向 x x x-轴。
不论坐标轴是何种取向,将坐标系统做任何角度的旋转,取向仍旧会保持不变。
2. 三维坐标系统
在二维直角坐标系上添加一个垂直于 x x x-轴和 y y y-轴的坐标轴,称为 z z z-轴。这三个坐标轴满足右手定则,则可得到三维的直角坐标系。 z z z-轴与 x x x-轴, y y y-轴相互正交于原点。在三维空间的任何一点 P P P,可以用直角坐标 ( x , y , z ) (x, y, z) (x,y,z) 来表达其位置。参阅图 4,两个点 P P P 与 Q Q Q 的直角坐标分别为 ( 3 , 0 , 5 ) (3, 0, 5) (3,0,5) 与 ( − 5 , − 5 , 7 ) ( - 5, - 5, 7) (−5,−5,7)。
三维直角坐标系的三个平面, x y xy xy-平面, y z yz yz-平面, x z xz xz-平面,将三维空间分成了八个部分,称为卦限 (octant)。第一卦限 I I I 中每一个点的三个坐标都是正值。
图 4. 三维直角坐标系,
y
y
y-轴的方向是远离读者。
图 5. 三维笛卡尔坐标系。
图 6. A three dimensional Cartesian coordinate system, with origin
O
O
O and axis lines
X
X
X,
Y
Y
Y and
Z
Z
Z, oriented as shown by the arrows. The tick marks on the axes are one length unit apart. The black dot shows the point with coordinates
x
=
2
x = 2
x=2,
y
=
3
y = 3
y=3, and
z
=
4
z = 4
z=4, or
(
2
,
3
,
4
)
(2, 3, 4)
(2,3,4).
tick [tɪk]:n. 蜱,记号,赊账,核对号 v. 发出滴答声,滴答地走时,标记号,打上钩
2.1. 三维空间
直角坐标系的 x x x-轴、 y y y-轴与 z z z-轴必须相互垂直。右手坐标系又称为标准坐标系或正值坐标系。
右手坐标系这名词是由右手定则而来的。先将右手的手掌与手指伸直,然后将中指指向往手掌的掌面半空间,与食指呈直角关系。再将大拇指往上指去,与中指、食指都呈直角关系。则大拇指、食指与中指分别表示了右手坐标系的 x x x-轴、 y y y-轴与 z z z-轴。同样地,用左手也可以表示出左手坐标系。
图 7 试着展示出一个左手坐标系与一个右手坐标系。用二维画面来展示三维物体,会造成扭曲或模棱两可的图形。指向下方与右方的轴,也有指向读者的意思;而位置居于中间的轴,也有指向读者正在看的方向的意思。平行于 x y xy xy-平面的红色圆形曲箭,其红色箭头从 z z z-轴前面经过,表示从 x x x-轴往 y y y-轴的旋转方向。
图 7. 左边是左手取向,右边是右手取向。
Fig. 8. 3D Cartesian coordinate handedness.
References
[1] Yongqiang Cheng, https://yongqiang.blog.csdn.net/
[2] Cartesian coordinate system, https://en.wikipedia.org/wiki/Cartesian_coordinate_system