文章目录
前言
本文简单介绍了三种常用坐标系,直角坐标系(笛卡尔坐标系)、圆柱坐标系、球坐标系。
一、直角坐标系(笛卡尔坐标系)
1.1定义
定义:由三个相互垂直的**坐标轴(𝑥,𝑦,𝑧)**构成,空间中任一点的位置用 (𝑥,𝑦,𝑧) 表示。
1.2单位矢量
单位矢量:固定不变,𝑒𝑥,𝑒𝑦,𝑒𝑧分别沿坐标轴方向。
1.3适用场景
适用场景:具有直线对称性或边界为平面(如长方体、平板)的问题。
1.4数学工具
- 拉普拉斯方程
- 分离变量法结合傅里叶级数求解
1.5应用实例
1.5.1平行板电容器
平行板电容器:电场均匀,沿 𝑧方向,电势线性变化。
1.5.2矩形波导
矩形波导:分析电磁波传播模式(如TE/TM模),场分量沿 𝑥,𝑦分布。
1.5.3微带线设计
微带线设计:电场和磁场分布在平面结构中,直角坐标系便于建模。
二、圆柱坐标系
2.1定义
定义:由径向距离 𝜌****方位角 𝜙和高度 𝑧构成,空间中任一点的位置用 (𝜌,𝜙,𝑧)表示。
2.2单位矢量
单位矢量:𝑒𝜌,𝑒𝜙随位置变化,𝑒𝑧固定。
2.3适用场景
适用场景:具有轴对称性或圆形边界的问题。
2.4数学工具
- 拉普拉斯方程。
- 贝塞尔函数用于分离变量求解。
2.5应用示例
2.5.1无限长直导线磁场
无限长直导线磁场:安培环路定律给出 𝐵𝜙=𝜇𝐼/2𝜋𝜌。
2.5.2同轴电缆
同轴电缆:电场沿 𝜌 方向分布,适用于TEM波传输。
2.5.3光纤中的模式分析
光纤中的模式分析:利用贝塞尔函数描述光场的径向分布。
三、球坐标系
3.1定义
定义:由径向距离 𝑟,极角 𝜃(与 𝑧轴夹角)和方位角 𝜙构成,空间中任一点的位置用 (𝑟,𝜃,𝜙)表示。
3.2单位矢量
单位矢量:𝑒𝑟,𝑒𝜃,𝑒𝜙均随位置变化。
3.3适用场景
适用场景:具有球对称性或点源辐射的问题。
3.4数学工具
- 拉普拉斯方程
- 勒让德多项式展开求解电势。
3.5应用实例
3.5.1点电荷电场
点电荷电场:库仑定律 𝐸𝑟=𝑄/4𝜋𝜖𝑟2 ,电势仅依赖 𝑟。
3.5.2偶极子天线
偶极子天线:辐射场方向图用 𝑟,𝜃,𝜙描述,涉及角分布。
3.5.3地球磁场模型
地球磁场模型:近似为磁偶极子场,依赖极角 𝜃。
四、坐标系选择原则
4.1对称性匹配
对称性匹配:优先选择与问题几何形状一致的坐标系(如球对称用球坐标)。
4.2简化计算
简化计算:减少变量耦合,例如轴对称问题用圆柱坐标系可分离变量。
4.3物理直观性
物理直观性:场的方向与单位矢量一致(如圆柱坐标中磁场仅有 𝜙分量)。
五、总结
5.1直角坐标系
直角坐标系:平面边界或直线对称性问题(如波导、电容器)。
5.2圆柱坐标系
圆柱坐标系:轴对称或环形结构问题(如电缆、旋转机械场分析)。
5.3球坐标系
球坐标系:点源、球体或辐射问题(如天线、带电球体)。