GD32,在电源电路VDD VDDA VREF+/-参考设计

GD32,在电源电路参考设计

资料来源于微信公众号“life_and_family”,更多相关资料可以关注下该公众号
对于GD32,在电源电路设计方面的一些参考建议,以GD32F1x0为例子

 

VDD脚必须外接电容(N*0.luf+l0uf陶瓷电容);
◆VDDA脚必须外接电容(0.luf+luf陶瓷电容);
◆VBAT引脚必须连接至外部电池连接至VDD电源上;VREF+引脚可以直连至VDDA,如果VREF上使用单独的外部参考电压,必须在这个引脚上连接一个0.luF和I个luf的电容;
对于PCB布线方面建议:
电压跌落相关解决方案口采用独立供电方案:
1.MCU和耗电设备独立供电;优化电源方案
2.提高电源的适应性和抗干扰能力;
3适当调整负载电容,根据电路实际需求做相关调整;
4.有些型号MCU掉电电压可配置,可根据需求调整掉电电压范围;

更多资料来源于微信公众号:

stm32的VDDA与VDD应该怎样连接?

接入主供电VCC,然后经由VCC分别接俩电感后一个连接VDDD一个连接VDDA,其中,VDDA最好再经由电容再次滤波,因为模拟电源要求比数字电源高!

VDD是主供电电源,也是IO口输出电平的输入电源。VDDA是模拟电源,当使用到模拟信号的时候,比如AD(模数)或者DA(数模)的时候,系统会使用VDDA的电压作为参考电压来。不要求精准使用的话,可以直接把VDDA和VDD同时接入3.3V就行。如果要求精准

有些把VREF VDDA接3.3V,是用外部基准还是内部基准?

### 大模型对齐微调DPO方法详解 #### DPO简介 直接偏好优化(Direct Preference Optimization, DPO)是一种用于改进大型语言模型行为的技术,该技术通过结合奖励模型训练强化学习来提升训练效率与稳定性[^1]。 #### 实现机制 DPO的核心在于它能够依据人类反馈调整模型输出的概率分布。具体来说,当给定一对候选响应时,DPO试图使更受偏好的那个选项具有更高的生成概率。这种方法不仅简化了传统强化学习所需的复杂环境设置,而且显著增强了模型对于多样化指令的理解能力执行精度[^2]。 #### PAI平台上的实践指南 为了便于开发者实施这一先进理念,在PAI-QuickStart框架下提供了详尽的操作手册。这份文档覆盖了从环境配置直至完成整个微调流程所需的一切细节,包括但不限于数据准备、参数设定以及性能评估等方面的内容。尤其值得注意的是,针对阿里云最新发布的开源LLM——Qwen2系列,文中给出了具体的实例说明,使得即使是初次接触此类工作的用户也能顺利上手。 ```python from transformers import AutoModelForCausalLM, Trainer, TrainingArguments model_name_or_path = "qwen-model-name" tokenizer_name = model_name_or_path training_args = TrainingArguments( output_dir="./results", per_device_train_batch_size=8, num_train_epochs=3, ) trainer = Trainer( model_init=lambda: AutoModelForCausalLM.from_pretrained(model_name_or_path), args=training_args, train_dataset=train_dataset, ) # 假设已经定义好了train_dataset trainer.train() ``` 这段代码片段展示了如何使用Hugging Face库加载预训练模型并对其进行微调的过程。虽然这里展示的例子并不完全对应于DPO的具体实现方式,但它提供了一个基础模板供进一步定制化开发之用[^3]。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值