一文尽知球面镜反射、折射和透镜成像的总结对比

、概要

本文是在《高中几何光学的核心知识要点总结》: link的基础上对几何光学中反射、折射和透镜成像规律的进一步深入总结对比。经多轮“deepseek-R1总结+人肉修订补充”迭代而成。
同样地,主要是参考赵凯华《新概念物理高中读本3》第五章 几何光学的内容。


一、符号(symbol and sign)定义和规则

参数定义
物距 u u u实物取正值,虚物取负值(实物位于入射光线侧)。
像距 v v v实像取正值(光线实际汇聚),虚像取负值(光线反向延长线汇聚)。
曲率半径 r r r球面反射/折射:凹面迎光(入射光侧为凹面)时 r > 0 r > 0 r>0,凸面迎光时 r < 0 r < 0 r<0
透镜:分解成入射面折射和出射面折射,各折射面半径的符号与上述折射的情况相同,因为透镜成像本来就是由两次折射组合而成
焦点平行光束入射时会聚的地方即为焦点。实际光线会聚的点为实焦点,焦距为正; 光线反向延长线会聚的点为虚焦点,焦距为负
焦距 f f f球面反射/折射 f = r 2 ( 符号跟随半径 f = \frac{r}{2}(符号跟随半径 f=2r(符号跟随半径r ) ) )
会聚透镜(e.g, 凸透镜在空气中) f > 0 f > 0 f>0
发散透镜(e.g, 凹透镜在空气中) f < 0 f < 0 f<0
横向放大率 M M M与主光轴垂直方向的放大率(主光轴方向为纵向,所以垂直方向为横向)。
(相对于物)正立的像为正值,倒立的像为负值。绝对值大于1表示放大,小于1表示缩小

注1: 以上关于透镜的焦距正负分类,为什么是按会聚还是发散来分,而不是凸或凹?这是因为根据透镜材质与周围介质折射率相对大小,凸透镜也可以是发散,凹透镜也可以是会聚。一般应用条件下,透镜放在光疏介质中,凸透镜是会聚透镜,凹透镜是发散透镜。


二、物像距公式,高斯公式,横向放大率公式

1. 球面反射成像(单界面,无跨介质光线传播)
  • 成像公式
    1 u + 1 v = 2 r = 1 f \frac{1}{u} + \frac{1}{v} = \frac{2}{r}=\frac{1}{f} u1+v1=r2=f1

  • 横向放大率公式
    M = − v u M = -\frac{v}{u} M=uv

  • 符号规则

    • r > 0 r > 0 r>0(凹面镜,凹面迎光), r < 0 r < 0 r<0(凸面镜,凸面迎光)。
    • 物/像距为正表示实物/像,为负表示虚物/像。简记为实正虚负
    • 物/像正立(横向放大率)为正,倒立为负。简记为正正倒负 。当然,也可以总以物的方向为正,像相对于物正立则为正,像相对于物倒立则为负。
  • 物像位置关系

    • 虚实异侧。虚像的话与实物异侧,实像的话与实物同侧(因为是反射成像,光线实汇聚的话肯定是与原实物同侧)。如果是虚物是什么情况呢(待确认)?
2. 球面折射成像(单界面,两侧介质折射率 n 1 n_1 n1 n 2 n_2 n2
  • 成像公式
    n 1 u + n 2 v = n 1 − n 2 r \frac{n_1}{u} + \frac{n_2}{v} = \frac{n_1 - n_2}{r} un1+vn2=rn1n2
    入射侧为 n 1 n_1 n1,折射侧为 n 2 n_2 n2
  • 横向放大率公式
    M = − n 1 v n 2 u M = -\frac{n_1 v}{n_2 u} M=n2un1v

tips: 反射看作是入射光线和反射光线传播的介质相等的话,则反射的横向放大率公式可以看作是折射公式的一种特例,这样,两个公式就统一起来了。

  • 符号规则
    • r > 0 r > 0 r>0(凹面迎光), r < 0 r < 0 r<0(凸面迎光)。 tips:从迎光面的角度来定半径正负的话,折射和反射的情况就统一了。
    • 与反射相同,物/像都是实正虚负
    • 横向放大率符号与与反射相同。
  • 物像位置关系
    • 虚实同侧。虚像的话与实物同侧,实像的话与实物异侧。注意,这个与反射的情况相反。但是应该很好理解,折射成像嘛,实际光线会聚的话就应该是在与物异侧会聚。如果是虚物是什么情况呢(待确认)?

注意:由于折射是光线跨介质传输,存在两个介质折射率差异,导致成像公式形式不同,以及物像位置关系相反。但是横向放大率以及符号规则均保持一致的形式。

3. 薄透镜成像(透镜材料折射率 n lens n_{\text{lens}} nlens,周围介质 n med n_{\text{med}} nmed
  • 成像公式
    1 f = ( n lens n med − 1 ) ( 1 r 2 − 1 r 1 ) \frac{1}{f} = \left( \frac{n_{\text{lens}}}{n_{\text{med}}} - 1 \right) \left( \frac{1}{r_2} - \frac{1}{r_1} \right) f1=(nmednlens1)(r21r11)

1 u + 1 v = 1 f \frac{1}{u} + \frac{1}{v} = \frac{1}{f} u1+v1=f1

  • 横向放大率公式
    M = − v u M = -\frac{v}{u} M=uv

  • 符号规则

    • r 1 r_1 r1 r 2 r_2 r2 分别表示入射面和出射面的半径。符号由迎光面决定:
      • 光入射面:凹面迎光 r 1 > 0 r_1 > 0 r1>0,凸面迎光 r 1 < 0 r_1 < 0 r1<0
      • 光出射面:凹面迎光 r 2 > 0 r_2 > 0 r2>0,凸面迎光 r 2 < 0 r_2 < 0 r2<0。与折射的情况相同。
      • 显然,凸透镜的光入射面为凸面迎光所以 r 1 < 0 r_1 < 0 r1<0,出射面为凹面迎光所以 r 2 > 0 r_2 > 0 r2>0。凹透镜反之。注意,这个与介质和透镜折射率无关。
    • 横向放大率符号规则与反射相同。
    • 正立和倒立的符号规则与反射相同,物/像都是实正虚负
  • 物像位置关系

    • 虚实同侧。虚像的话与实物同侧,实像的话与实物异侧。注意,这个与折射的情况相同,不难理解。如果是虚物是什么情况呢(待确认)?
  • 会聚还是发散

    • 会聚透镜:平行光入射后实际光线会聚于焦点(实焦点, f > 0 f > 0 f>0)。
    • 发散透镜:平行光入射后发散,其反向延长线会聚于虚焦点( f < 0 f < 0 f<0)。
    • 会聚还是发散并不仅仅取决于是凸透镜还是凹透镜,还取决于透镜折射率和周围介质折射率。
      • 如果透镜放在光疏介质中,即 n med < n lens {n_{\text{med}}} < {n_{\text{lens}}} nmed<nlens,则凸透镜会聚,凹透镜发散
      • 如果透镜放在光密介质中,即 n med > n lens {n_{\text{med}}} > {n_{\text{lens}}} nmed>nlens,则凸透镜会聚,凹透镜发散
      • 注意,这里假定两侧介质一样。如果两侧介质不一样,那就更加复杂了。一般也用不到,这里就不再讨论。

4、总结表
类型公式关键符号规则横向放大率
球面反射镜 1 u + 1 v = 1 f , f = r 2 \frac{1}{u} + \frac{1}{v} = \frac{1}{f}, f=\frac{r}{2} u1+v1=f1,f=2r r > 0 r > 0 r>0(凹面镜) M = − v u M = -\frac{v}{u} M=uv
球面折射 n 1 u + n 2 v = n 1 − n 2 r \frac{n_1}{u} + \frac{n_2}{v} = \frac{n_1 - n_2}{r} un1+vn2=rn1n2 r > 0 r > 0 r>0(凹面迎光) M = − n 1 v n 2 u M = -\frac{n_1 v}{n_2 u} M=n2un1v
薄透镜 1 f = ( n lens n med − 1 ) ( 1 r 2 − 1 r 1 ) \frac{1}{f} = \left( \frac{n_{\text{lens}}}{n_{\text{med}}} - 1 \right) \left( \frac{1}{r_2} - \frac{1}{r_1} \right) f1=(nmednlens1)(r21r11) r 1 r_1 r1 r 2 r_2 r2 由迎光面凹凸性决定 M = − v u M = -\frac{v}{u} M=uv

tips: 如何记住它们? To be added.


三、其它

1. 焦点

不管对于球面镜还是透镜,焦点的统一定义(其物理含义)是当平行(于主光轴的)光束入射时会聚的点。如果是实际(经反射或者折射)光线会聚于一点,则该点为实焦点;如果是经反射或者折射的光线的反向延长线会聚于一点,则该点为虚焦点。

镜类型焦点性质焦距符号物理意义
球面反射镜实焦点 f > 0 f > 0 f>0平行入射光线反射后实际会聚于实焦点
球面折射镜(凹面迎光)??????与镜面两侧介质相对折射率大小有关,待讨论
球面折射镜(凸面迎光)??????同上
会聚透镜实焦点 f > 0 f > 0 f>0平行入射光线透射(两次折射)后实际会聚于实焦点
发散透镜虚焦点 f < 0 f < 0 f<0平行入射光线透射(两次折射)后反向延长线会聚于虚焦点

注1: 与透镜一样,对于球面折射成像,也同样存在球面两侧介质相对折射率大小问题。只不过一般的应用场景是入射光一侧是光疏介质另一侧是光密介质,所以如无特别指定一般均指这种情况。


四、例

例1:凸透镜在水中的会聚性
  • 条件 n lens = 1.5 n_{\text{lens}} = 1.5 nlens=1.5 n med = 1.33 n_{\text{med}} = 1.33 nmed=1.33 r 1 = − 20   cm r_1 = -20 \, \text{cm} r1=20cm r 2 = 30   cm r_2 = 30 \, \text{cm} r2=30cm
    1 f = ( 1.5 1.33 − 1 ) ( 1 30 − 1 − 20 ) ≈ 0.128 × ( 0.05 + 0.033 ) ≈ 0.0106   cm − 1 \frac{1}{f} = \left( \frac{1.5}{1.33} - 1 \right) \left( \frac{1}{30} - \frac{1}{-20} \right) \approx 0.128 \times \left( 0.05 + 0.033 \right) \approx 0.0106 \, \text{cm}^{-1} f1=(1.331.51)(301201)0.128×(0.05+0.033)0.0106cm1
    f ≈ 94.3   cm   ( > 0   ,会聚透镜 ) f \approx 94.3 \, \text{cm} \, (> 0 \, \text{,会聚透镜}) f94.3cm(>0,会聚透镜)
例2:凹透镜在二碘甲烷中的会聚性
  • 条件 n lens = 1.3 n_{\text{lens}} = 1.3 nlens=1.3 n med = 1.74 n_{\text{med}} = 1.74 nmed=1.74 r 1 = 15   cm r_1 = 15 \, \text{cm} r1=15cm r 2 = − 10   cm r_2 = -10 \, \text{cm} r2=10cm
    1 f = ( 1.3 1.74 − 1 ) ( 1 − 10 − 1 15 ) ≈ ( − 0.253 ) × ( − 0.1667 ) ≈ 0.0422   cm − 1 \frac{1}{f} = \left( \frac{1.3}{1.74} - 1 \right) \left( \frac{1}{-10} - \frac{1}{15} \right) \approx (-0.253) \times (-0.1667) \approx 0.0422 \, \text{cm}^{-1} f1=(1.741.31)(101151)(0.253)×(0.1667)0.0422cm1
    f ≈ 23.7   cm   ( > 0   ,会聚透镜 ) f \approx 23.7 \, \text{cm} \, (> 0 \, \text{,会聚透镜}) f23.7cm(>0,会聚透镜)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

笨牛慢耕

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值