零、概要
本文是在《高中几何光学的核心知识要点总结》: link的基础上对几何光学中反射、折射和透镜成像规律的进一步深入总结对比。经多轮“deepseek-R1总结+人肉修订补充”迭代而成。
同样地,主要是参考赵凯华《新概念物理高中读本3》第五章 几何光学的内容。
一、符号(symbol and sign)定义和规则
参数 | 定义 |
---|---|
物距 u u u | 实物取正值,虚物取负值(实物位于入射光线侧)。 |
像距 v v v | 实像取正值(光线实际汇聚),虚像取负值(光线反向延长线汇聚)。 |
曲率半径 r r r | 球面反射/折射:凹面迎光(入射光侧为凹面)时
r
>
0
r > 0
r>0,凸面迎光时
r
<
0
r < 0
r<0。 透镜:分解成入射面折射和出射面折射,各折射面半径的符号与上述折射的情况相同,因为透镜成像本来就是由两次折射组合而成 |
焦点 | 平行光束入射时会聚的地方即为焦点。实际光线会聚的点为实焦点,焦距为正; 光线反向延长线会聚的点为虚焦点,焦距为负 |
焦距 f f f | 球面反射/折射:
f
=
r
2
(
符号跟随半径
f = \frac{r}{2}(符号跟随半径
f=2r(符号跟随半径r
)
)
) 会聚透镜(e.g, 凸透镜在空气中) f > 0 f > 0 f>0 发散透镜(e.g, 凹透镜在空气中) f < 0 f < 0 f<0 |
横向放大率 M M M | 与主光轴垂直方向的放大率(主光轴方向为纵向,所以垂直方向为横向)。 (相对于物)正立的像为正值,倒立的像为负值。绝对值大于1表示放大,小于1表示缩小 |
注1: 以上关于透镜的焦距正负分类,为什么是按会聚还是发散来分,而不是凸或凹?这是因为根据透镜材质与周围介质折射率相对大小,凸透镜也可以是发散,凹透镜也可以是会聚。一般应用条件下,透镜放在光疏介质中,凸透镜是会聚透镜,凹透镜是发散透镜。
二、物像距公式,高斯公式,横向放大率公式
1. 球面反射成像(单界面,无跨介质光线传播)
-
成像公式:
1 u + 1 v = 2 r = 1 f \frac{1}{u} + \frac{1}{v} = \frac{2}{r}=\frac{1}{f} u1+v1=r2=f1 -
横向放大率公式:
M = − v u M = -\frac{v}{u} M=−uv -
符号规则:
- r > 0 r > 0 r>0(凹面镜,凹面迎光), r < 0 r < 0 r<0(凸面镜,凸面迎光)。
- 物/像距为正表示实物/像,为负表示虚物/像。简记为实正虚负 。
- 物/像正立(横向放大率)为正,倒立为负。简记为正正倒负 。当然,也可以总以物的方向为正,像相对于物正立则为正,像相对于物倒立则为负。
-
物像位置关系:
- 虚实异侧。虚像的话与实物异侧,实像的话与实物同侧(因为是反射成像,光线实汇聚的话肯定是与原实物同侧)。如果是虚物是什么情况呢(待确认)?
2. 球面折射成像(单界面,两侧介质折射率 n 1 n_1 n1、 n 2 n_2 n2)
- 成像公式:
n 1 u + n 2 v = n 1 − n 2 r \frac{n_1}{u} + \frac{n_2}{v} = \frac{n_1 - n_2}{r} un1+vn2=rn1−n2
入射侧为 n 1 n_1 n1,折射侧为 n 2 n_2 n2。 - 横向放大率公式:
M = − n 1 v n 2 u M = -\frac{n_1 v}{n_2 u} M=−n2un1v
tips: 反射看作是入射光线和反射光线传播的介质相等的话,则反射的横向放大率公式可以看作是折射公式的一种特例,这样,两个公式就统一起来了。
- 符号规则:
- r > 0 r > 0 r>0(凹面迎光), r < 0 r < 0 r<0(凸面迎光)。 tips:从迎光面的角度来定半径正负的话,折射和反射的情况就统一了。
- 与反射相同,物/像都是实正虚负。
- 横向放大率符号与与反射相同。
- 物像位置关系:
- 虚实同侧。虚像的话与实物同侧,实像的话与实物异侧。注意,这个与反射的情况相反。但是应该很好理解,折射成像嘛,实际光线会聚的话就应该是在与物异侧会聚。如果是虚物是什么情况呢(待确认)?
注意:由于折射是光线跨介质传输,存在两个介质折射率差异,导致成像公式形式不同,以及物像位置关系相反。但是横向放大率以及符号规则均保持一致的形式。
3. 薄透镜成像(透镜材料折射率 n lens n_{\text{lens}} nlens,周围介质 n med n_{\text{med}} nmed)
- 成像公式:
1 f = ( n lens n med − 1 ) ( 1 r 2 − 1 r 1 ) \frac{1}{f} = \left( \frac{n_{\text{lens}}}{n_{\text{med}}} - 1 \right) \left( \frac{1}{r_2} - \frac{1}{r_1} \right) f1=(nmednlens−1)(r21−r11)
1 u + 1 v = 1 f \frac{1}{u} + \frac{1}{v} = \frac{1}{f} u1+v1=f1
-
横向放大率公式:
M = − v u M = -\frac{v}{u} M=−uv -
符号规则:
-
r
1
r_1
r1 和
r
2
r_2
r2 分别表示入射面和出射面的半径。符号由迎光面决定:
- 光入射面:凹面迎光 r 1 > 0 r_1 > 0 r1>0,凸面迎光 r 1 < 0 r_1 < 0 r1<0。
- 光出射面:凹面迎光 r 2 > 0 r_2 > 0 r2>0,凸面迎光 r 2 < 0 r_2 < 0 r2<0。与折射的情况相同。
- 显然,凸透镜的光入射面为凸面迎光所以 r 1 < 0 r_1 < 0 r1<0,出射面为凹面迎光所以 r 2 > 0 r_2 > 0 r2>0。凹透镜反之。注意,这个与介质和透镜折射率无关。
- 横向放大率符号规则与反射相同。
- 正立和倒立的符号规则与反射相同,物/像都是实正虚负。
-
r
1
r_1
r1 和
r
2
r_2
r2 分别表示入射面和出射面的半径。符号由迎光面决定:
-
物像位置关系:
- 虚实同侧。虚像的话与实物同侧,实像的话与实物异侧。注意,这个与折射的情况相同,不难理解。如果是虚物是什么情况呢(待确认)?
-
会聚还是发散
- 会聚透镜:平行光入射后实际光线会聚于焦点(实焦点, f > 0 f > 0 f>0)。
- 发散透镜:平行光入射后发散,其反向延长线会聚于虚焦点( f < 0 f < 0 f<0)。
- 会聚还是发散并不仅仅取决于是凸透镜还是凹透镜,还取决于透镜折射率和周围介质折射率。
- 如果透镜放在光疏介质中,即 n med < n lens {n_{\text{med}}} < {n_{\text{lens}}} nmed<nlens,则凸透镜会聚,凹透镜发散
- 如果透镜放在光密介质中,即 n med > n lens {n_{\text{med}}} > {n_{\text{lens}}} nmed>nlens,则凸透镜会聚,凹透镜发散
- 注意,这里假定两侧介质一样。如果两侧介质不一样,那就更加复杂了。一般也用不到,这里就不再讨论。
4、总结表
类型 | 公式 | 关键符号规则 | 横向放大率 |
---|---|---|---|
球面反射镜 | 1 u + 1 v = 1 f , f = r 2 \frac{1}{u} + \frac{1}{v} = \frac{1}{f}, f=\frac{r}{2} u1+v1=f1,f=2r | r > 0 r > 0 r>0(凹面镜) | M = − v u M = -\frac{v}{u} M=−uv |
球面折射 | n 1 u + n 2 v = n 1 − n 2 r \frac{n_1}{u} + \frac{n_2}{v} = \frac{n_1 - n_2}{r} un1+vn2=rn1−n2 | r > 0 r > 0 r>0(凹面迎光) | M = − n 1 v n 2 u M = -\frac{n_1 v}{n_2 u} M=−n2un1v |
薄透镜 | 1 f = ( n lens n med − 1 ) ( 1 r 2 − 1 r 1 ) \frac{1}{f} = \left( \frac{n_{\text{lens}}}{n_{\text{med}}} - 1 \right) \left( \frac{1}{r_2} - \frac{1}{r_1} \right) f1=(nmednlens−1)(r21−r11) | r 1 r_1 r1、 r 2 r_2 r2 由迎光面凹凸性决定 | M = − v u M = -\frac{v}{u} M=−uv |
tips: 如何记住它们? To be added.
三、其它
1. 焦点
不管对于球面镜还是透镜,焦点的统一定义(其物理含义)是当平行(于主光轴的)光束入射时会聚的点。如果是实际(经反射或者折射)光线会聚于一点,则该点为实焦点;如果是经反射或者折射的光线的反向延长线会聚于一点,则该点为虚焦点。
镜类型 | 焦点性质 | 焦距符号 | 物理意义 |
---|---|---|---|
球面反射镜 | 实焦点 | f > 0 f > 0 f>0 | 平行入射光线反射后实际会聚于实焦点 |
球面折射镜(凹面迎光) | ??? | ??? | 与镜面两侧介质相对折射率大小有关,待讨论 |
球面折射镜(凸面迎光) | ??? | ??? | 同上 |
会聚透镜 | 实焦点 | f > 0 f > 0 f>0 | 平行入射光线透射(两次折射)后实际会聚于实焦点 |
发散透镜 | 虚焦点 | f < 0 f < 0 f<0 | 平行入射光线透射(两次折射)后反向延长线会聚于虚焦点 |
注1: 与透镜一样,对于球面折射成像,也同样存在球面两侧介质相对折射率大小问题。只不过一般的应用场景是入射光一侧是光疏介质另一侧是光密介质,所以如无特别指定一般均指这种情况。
四、例
例1:凸透镜在水中的会聚性
- 条件:
n
lens
=
1.5
n_{\text{lens}} = 1.5
nlens=1.5,
n
med
=
1.33
n_{\text{med}} = 1.33
nmed=1.33,
r
1
=
−
20
cm
r_1 = -20 \, \text{cm}
r1=−20cm,
r
2
=
30
cm
r_2 = 30 \, \text{cm}
r2=30cm。
1 f = ( 1.5 1.33 − 1 ) ( 1 30 − 1 − 20 ) ≈ 0.128 × ( 0.05 + 0.033 ) ≈ 0.0106 cm − 1 \frac{1}{f} = \left( \frac{1.5}{1.33} - 1 \right) \left( \frac{1}{30} - \frac{1}{-20} \right) \approx 0.128 \times \left( 0.05 + 0.033 \right) \approx 0.0106 \, \text{cm}^{-1} f1=(1.331.5−1)(301−−201)≈0.128×(0.05+0.033)≈0.0106cm−1
f ≈ 94.3 cm ( > 0 ,会聚透镜 ) f \approx 94.3 \, \text{cm} \, (> 0 \, \text{,会聚透镜}) f≈94.3cm(>0,会聚透镜)
例2:凹透镜在二碘甲烷中的会聚性
- 条件:
n
lens
=
1.3
n_{\text{lens}} = 1.3
nlens=1.3,
n
med
=
1.74
n_{\text{med}} = 1.74
nmed=1.74,
r
1
=
15
cm
r_1 = 15 \, \text{cm}
r1=15cm,
r
2
=
−
10
cm
r_2 = -10 \, \text{cm}
r2=−10cm。
1 f = ( 1.3 1.74 − 1 ) ( 1 − 10 − 1 15 ) ≈ ( − 0.253 ) × ( − 0.1667 ) ≈ 0.0422 cm − 1 \frac{1}{f} = \left( \frac{1.3}{1.74} - 1 \right) \left( \frac{1}{-10} - \frac{1}{15} \right) \approx (-0.253) \times (-0.1667) \approx 0.0422 \, \text{cm}^{-1} f1=(1.741.3−1)(−101−151)≈(−0.253)×(−0.1667)≈0.0422cm−1
f ≈ 23.7 cm ( > 0 ,会聚透镜 ) f \approx 23.7 \, \text{cm} \, (> 0 \, \text{,会聚透镜}) f≈23.7cm(>0,会聚透镜)