这一节讲单调函数,虽然也很短,但单调函数性质很好,易应用,给出的两个例子一个是反函数的存在性(在讲反函数微分时会用到),另一个是构建n次方根的alternative method。习题不错
Exercise 9.8.1
If a < b a<b a<b and f : [ a , b ] → R f:[a,b]→\mathbf R f:[a,b]→R is a monotonic function on [ a , b ] [a,b] [a,b], then suppose first f f f is monotonic increasing, we have f ( b ) ≥ f ( x ) , ∀ x ∈ [ a , b ] f(b)≥f(x),∀x∈[a,b] f(b)≥f(x),∀x∈[a,b], and f ( a ) ≤ f ( x ) , ∀ x ∈ [ a , b ] f(a)≤f(x),∀x∈[a,b] f(a)≤f(x),∀x∈[a,b], so f f f attain its maximum at b b b and its minimum at a a a, if f f f is strictly increasing, the proof is the same.
Suppose next that f f f is monotonic decreasing, we have f ( a ) ≥ f ( x ) , ∀ x ∈ [ a , b ] f(a)≥f(x),∀x∈[a,b] f(a)≥f(x),∀x∈[a,b], and f ( b ) ≤ f ( x ) , ∀ x ∈ [ a , b ] f(b)≤f(x),∀x∈[a,b] f(b)≤f(x),∀x∈[a,b], so f f f attain its maximum at a and its minimum at b b b, if f f f is strictly increasing, the proof is the same.
Exercise 9.8.2
Let f : [ − 1 , 1 ] → R f:[-1,1]→\mathbf R f:[−1,1]→R be defined as:
f ( x ) = { x , x ∈ [ − 1 , 0 ) x + 1 , x ∈ [ 0 , 1 ] f(x)=\begin{cases}x,& x∈[-1,0)\\x+1,&x∈[0,1] \end{cases} f(x)={
x,x+1,x∈[−1,0)x∈[0,1]
Then f f f is strictly monotone (thus monotone), f ( − 1 ) = − 1 f(-1)=-1 f(−1)=−1 and f ( 1 ) = 2 f(1)=2 f(1)=2, but no element in [ − 1 , 1 ] [-1,1] [−1,1] could make f ( x ) = 1 / 2 f(x)=1/2 f(x)=1/2.
Exercise 9.8.3
We shall divide into three cases: f ( a ) = f ( b ) , f ( a ) < f ( b ) , f ( a ) > f ( b ) f(a)=f(b),f(a)<f(b),f(a)>f(b) f(a)=f(b),f(a)<f(b),f(a)>f(b). The first case is obviously a contradiction to f f f is one-to-one. So we only consider the last two cases.
Case f ( a ) < f ( b ) f(a)<f(b) f(a)<f(b). Assume we can find x < y ∈ [ a , b ] x<y∈[a,b] x<y∈[a,b] s.t. f ( x ) ≥ f ( y ) f(x)≥f(y) f(x)≥f(y), since f f f is one-to-one we can’t have f ( x ) = f ( y ) f(x)=f(y) f(x)=f(y), so we can only assume f ( x ) > f ( y ) f(x)>f(y) f(x)>f(y). Since x < y x<y x<y, we have y ≠ a y≠a y=a. So if f ( a ) > f ( y ) f(a)>f(y) f(a)>f(y), then f ( y ) < f ( a ) < f ( b ) f(y)<f(a)<f(b) f(y)<f(a)<f(b), by the intermediate value theorem, ∃ c ∈ [ y , b ] ∃c∈[y,b] ∃c∈[y,b], s.t. f ( c ) = f ( a ) f(c)=f(a) f(c)=f(a), this contradicts the fact that f f f is one-to-one. If f ( a ) < f ( y ) f(a)<f(y) f(a)<f(y), then f ( a ) < f ( y ) < f ( x ) f(a)<f(y)<f(x) f(a)<f(y)<f(x), by the intermediate value theorem, ∃ c ∈ [ a , x ] ∃c∈[a,x] ∃c∈[a,x], s.t. f ( c ) = f ( y ) f(c)=f(y) f(c)=f(y), this again contradicts the fact that f f f is one-to-one. So ∀ x < y ∈ [ a , b ] , f ( x ) < f ( y )