这一节讲了permutation,即 1 , … , n 1,\dots,n 1,…,n的重排与行列式的关系,进而证明了行列式的唯一性。这种处理优于将permutation引入到行列式的定义中,因为permutation的很多性质用行列式的alternate和单位矩阵值为1的已证结论进行证明更为方便。Theorem 2通过给出一个显式的与permutation有关的公式来证明行列式的唯一性,Theorem 3说明行列式具有乘法不变性,由此可以引出很多相关的性质。
Exercises
1.If K K K is a commutative ring with identity and A A A is the matrix over K K K given by
A = [ 0 a b − a 0 c − b − c 0 ] A=\begin{bmatrix}0&a&b\\-a&0&c\\-b&-c&0\end{bmatrix} A=⎣⎡0−a−ba0−cbc0⎦⎤
show that det A = 0 \det A=0 detA=0.
Solution: For the first row, if choose σ 1 = 2 \sigma1=2 σ1=2, then σ 3 \sigma3 σ3 can only be 1 and σ 2 = 3 \sigma2=3 σ2=3, if choose σ 1 = 3 \sigma1=3 σ1=3, then σ 2 \sigma2 σ2 can only be 1 and σ 3 = 2 \sigma3=2 σ3=2, since sgn { 231 } = 1 \text{sgn}\{231\}=1 sgn{
231}=1 and sgn { 312 } = 1 \text{sgn}\{312\}=1 sgn{
312}=1, we have det A = a c ( − b ) + b ( − a ) ( − c ) = a b c − a b c = 0 \det A=ac(-b)+b(-a)(-c)=abc-abc=0 detA=ac(−b)+b(−a)(−c)=abc−abc=0.
2.Prove that the determinant of the Vandermonde matrix
[ 1 a a 2 1 b b 2 1 c c 2 ] \begin{bmatrix}1&a&a^2\\1&b&b^2\\1&c&c^2\end{bmatrix} ⎣⎡111abca2b2c2⎦⎤
is ( b − a ) ( c − a ) ( c − b ) (b-a)(c-a)(c-b) (b−a)(c−a)(c−b).
Solution: Use the definition we have
det [ 1 a a 2 1 b b 2 1 c c 2 ] = sgn { 123 } 1 b c 2 + sgn { 132 } 1 b 2 c + sgn { 213 } a 1 c 2 + sgn { 231 } a b 2 1 + sgn { 312 } a 2 1 c + sgn { 321 } a 2 b 1 = b c 2 − b 2 c − a c 2 + a b 2 + a 2 c − a 2 b = b c ( c − b ) + a 2 ( c − b ) − a ( b + c ) ( c − b ) = [ b c + a 2 − a b − a c ] ( c − b ) = ( b − a ) ( c − a ) ( c − b ) \begin{aligned}&\quad \det \begin{bmatrix}1&a&a^2\\1&b&b^2\\1&c&c^2\end{bmatrix}\\&=\text{sgn}\{123\}1bc^2+\text{sgn}\{132\}1b^2c+\text{sgn}\{213\}a1c^2+\text{sgn}\{231\}ab^21\\&\quad+\text{sgn}\{312\}a^21c+\text{sgn}\{321\}a^2b1\\&=bc^2-b^2c-ac^2+ab^2+a^2c-a^2b=bc(c-b)+a^2(c-b)-a(b+c)(c-b)\\&=[bc+a^2-ab-ac](c-b)=(b-a)(c-a)(c-b)\end{aligned} det⎣⎡111abca2b2c2⎦⎤=sgn{
123}1bc2+sgn{
132}1b2c+sgn{
213}a1c2+sgn{
231}ab21+sgn{
312}a21c+sgn{
321}a2b1=bc2−b2c−ac2+ab2+a2c−a2b=bc(c−b)+a2(c−b)−a(b+c)(c−b)=[bc+a2−ab−ac](c−b)=(b−a)(c−a)(c−b)
3.List explicitly the six permutations of degree 3, state which are odd and which are even, and use this to give the complete formula (5-15) for the determinant of a 3 × 3 3\times 3 3×3 matrix.
Solution: the six permutations of degree 3 are 123 , 132 , 213 , 231 , 312 , 321 123,132,213,231,312,321 123,132,213,231,312,321, and we have sgn { 123 } = sgn { 231 } = sgn { 312 } = 1 , sgn { 132 } = sgn { 213 } = sgn { 321 } = − 1 \text{sgn}\{123\}=\text{sgn}\{231\}=\text{sgn}\{312\}=1,\text{sgn}\{132\}=\text{sgn}\{213\}=\text{sgn}\{321\}=-1 sgn{
123}=sgn{
231}=sgn{
312}=1,sgn{
132}=sgn{
213}=sgn{
321}=−1, thus if A A A is a 3 × 3 3\times 3 3×3 matrix, we have
det A = A ( 1 , σ 1 ) A ( 2 , σ 2 ) A ( 3 , σ 3 ) − A ( 1 , σ 1 ) A ( 2 , σ 3 ) A ( 3 , σ 2 ) − A ( 1 , σ 2 ) A ( 2 , σ 1 ) A ( 3 , σ 3 ) + A ( 1 , σ 2 ) A ( 2 , σ 3 ) A ( 3 , σ 1 ) + A ( 1 , σ 3 ) A ( 2 , σ 1 ) A ( 3 , σ 2 ) − A ( 1 , σ 3 ) A ( 2 , σ 2 ) A ( 3 , σ 1 ) \begin{aligned}\det A&=A(1,\sigma1)A(2,\sigma2)A(3,\sigma3)-A(1,\sigma1)A(2,\sigma3)A(3,\sigma2)\\&\quad-A(1,\sigma2)A(2,\sigma1)A(3,\sigma3)+A(1,\sigma2)A(2,\sigma3)A(3,\sigma1)\\&\quad+A(1,\sigma3)A(2,\sigma1)A(3,\sigma2)-A(1,\sigma3)A(2,\sigma2)A(3,\sigma1)\end{aligned} detA=A(1,σ1)A(2,σ2)A(3,σ3)−A(1,σ1)A(2,σ3)A(3,σ2)−A(1,σ2)A(2,σ1)A(3,σ3)+A(1,σ2)A(2,σ3)A(3,σ1)+A(1,σ3)A(2,σ1)A(3,σ2)−A(1,σ3)A(2,σ2)A(3,σ1)
4.Let σ \sigma σ and τ \tau τ be the permutations of degree 4 4 4 defined by σ 1 = 2 , σ 2 = 3 , σ 3 = 4 , σ 4 = 1 , τ 1 = 3 , τ 2 = 1 , τ 3 = 2 , τ 4 = 4. \sigma1=2,\sigma2=3,\sigma3=4,\sigma4=1,\tau1=3,\tau2=1,\tau3=2,\tau4=4. σ1=2,σ2=3,σ3=4,σ4=1,τ1=3,τ2=1,τ3=2,τ4=4.
( a ) Is σ \sigma σ odd or even? Is τ \tau τ odd or even?
( b ) Find σ τ \sigma\tau στ and τ σ \tau\sigma τσ.
Solution:
( a ) From 1234 1234 1234 to 2341 2341 2341 there needs 3 changes, thus σ \sigma σ is odd, from 1234 1234 1234 to 3124 3124 3124 there needs 2 changes, thus τ \tau τ is even.
( b ) We have σ τ 1 = 4 , σ τ 2 = 2 , σ τ 3 = 3 , σ τ 4 = 1 \sigma\tau1=4,\sigma\tau2=2,\sigma\tau3=3,\sigma\tau4=1 στ1=4,στ2=2,στ3=3,στ4=1 and τ σ 1 = 1 , τ σ 2 = 2 , τ σ 3 = 4 , τ σ 4 = 3 \tau\sigma1=1,\tau\sigma2=2,\tau\sigma3=4,\tau\sigma4=3 τσ1=1,τσ2=2,τσ3=4,τσ4=3.
5.If A A A is an invertible n × n n\times n n×n matrix over a field, show that det A ≠ 0 \det A\neq 0 detA=0.
Solution: We have A A − 1 = I AA^{-1}=I AA−1=I, and thus use Theorem 3 we have
1 = det I = det ( A A − 1 ) = ( det A ) ( det A − 1 ) ⟹ det A = 1 [ det A − 1 ] ≠ 0 1=\det I=\det (AA^{-1})=(\det A)(\det A^{-1})\implies \det A=\frac{1}{[\det A^{-1}]}\neq 0 1=detI=det(AA−1)=(detA)(detA−1)⟹detA=[detA−1]1=0
6.Let A A A be a