智能车——三轮差速

摄像头车三轮

在之前摄像头组都是用的4轮的车,我之前也是用四轮车练手的,后来比赛规则出来了,变成要用三轮车了,三轮的前轮就是个摆设,任何移动转弯都要靠后边的两个轮,所以差速就尤为重要了,之前在学校写了2套三轮的差速,但是一直没时间上赛道,(后来放假回家买了一套赛道,结果赛道刚来就得新冠了,兜兜转转昨天才铺好赛道,元旦第一次上道,从上午10点一直搞到晚上11点,代码修修改改,删删减减,最后能跑直道和弯道。S弯道按照理论来说也是可以跑得,但是因为一共用了4个pid,以及驱动没有最终确认,所以嘛就没有太精细的调参数,大概调一调,能用就行了,不然的话,换了驱动还要重新调12个参数调起来还是很累的。

下面说一说思路:速度我是用了两个pid(左轮一个pid右轮一个pid,因为我这个左右轮有点误差),

差速我用了两个pid,先用差速pid得到一个轮的速度,再把这个轮的速度和另一个轮的速度误差pid,就是让这个轮追上那个轮,然后把两个轮的速度分别进行pid,就是相当于一个串级pid。

上一下代码

<think>好的,我现在需要处理用户关于智能车三轮弯道加速的算法和控制策略的问题。首先,我得仔细理解用户的需求。用户提到了三轮结构,这在智能车竞赛中比较常见,尤其是摄像头组。三轮车的转弯主要依靠后轮差速,而前轮可能只是支撑作用。所以,差速控制是关键。 接下来,我需要回顾相关的引用内容。引用2中用户提到三轮车的差速尤为重要,他们自己写了两套差速算法,但因为时间原因没有完全测试。引用3则讨论了图像处理和控制算法,提到了速度提升后舵机抖动的问题。这些信息帮助我了解现有的挑战和可能的解决方案。 用户的问题涉及弯道加速,这需要平衡速度和稳定性。高速过弯容易导致打滑或冲出赛道,所以控制策略必须考虑动态调整。可能的方面包括差速控制、路径规划、PID参数优化等。 首先,差速控制算法三轮转弯依赖左右后轮的速度差。需要根据弯道曲率实时调整两轮转速。阿克曼模型可能不太适用,三轮结构更接近差速驱动。这里可能需要使用基于曲率的差速公式,比如根据转弯半径计算左右轮速。 其次,路径规划。摄像头或传感器获取的赛道信息需要实时处理,识别弯道类型(如普通弯、S弯),并提前预判路径,调整车速。引用3提到的赛道类型识别模糊算法可能与此相关,但用户提到识别模糊导致的问题,可能需要更精确的图像处理。 然后是PID控制。三轮车可能需要多个PID控制器,比如转向PID和速度PID,甚至每个轮子单独控制。引用2中提到用了4个PID,可能涉及转向、差速、速度等。但参数调节复杂,尤其是在高速下容易引发抖动,如引用3中的舵机抖动问题,可能需要调整PID参数或加入滤波。 另外,动力学模型和滑移控制也很重要。高速过弯时,轮胎与地面的摩擦力是关键,需要估计滑移率,调整扭矩分配。这可能涉及更复杂的控制算法,如模型预测控制(MPC)或模糊控制。 还需要考虑传感器融合,比如摄像头、编码器、IMU的数据融合,提高状态估计的准确性。例如,IMU可以检测车辆的加速度和角速度,帮助调整控制策略。 最后,实现方法可能包括仿真测试和实车调参。先通过仿真验证算法,再在实车上微调参数,尤其是差速和PID参数,逐步提升速度,同时避免舵机抖动或失控。 总结下来,回答需要涵盖差速控制、路径规划与前瞻、多PID协同、动力学模型、传感器融合等方面,并结合用户提到的实际问题和引用内容,提供具体的技术点和方法。</think>### 智能车三轮弯道加速技术及控制策略 #### 1. **差速控制与动力学建模** 三轮车弯道加速的核心在于后轮差速控制。差速需根据弯道曲率实时调整左右轮转速,避免侧滑或转向不足。 - **差速公式**:若转弯半径为$R$,轮距为$L$,则左右轮速度差可近似为: $$v_{\text{left}} = \frac{2R - L}{2R} \cdot v_{\text{avg}}, \quad v_{\text{right}} = \frac{2R + L}{2R} \cdot v_{\text{avg}}$$ 其中$v_{\text{avg}}$为期望平均速度[^2]。 - **动力学补偿**:需结合轮胎滑移率模型,实时调整扭矩分配,公式为: $$T_{\text{adjust}} = k \cdot (\mu \cdot F_z - F_{\text{lateral}})$$ $\mu$为摩擦系数,$F_z$为垂直载荷,$F_{\text{lateral}}$为横向力[^1]。 #### 2. **路径规划与前瞻控制** 通过摄像头或激光雷达获取赛道信息,提前预判弯道类型(如S弯、急弯),动态调整车速和转向角。 - **图像处理**:使用边缘检测(如Canny算法)和透视变换,提取赛道中线,计算曲率半径$R$[^3]。 - **速度规划**:基于曲率限制最大向心加速度,公式为: $$v_{\text{max}} = \sqrt{a_{\text{max}} \cdot R}$$ 其中$a_{\text{max}}$为车体可承受的最大向心加速度。 #### 3. **多PID协同控制** 三轮车需同时控制转向、速度和差速,通常需4个以上PID控制器: 1. **转向PID**:根据赛道中线偏差调整前轮舵机角度。 2. **速度PID**:维持目标车速,尤其在直道末端预加速。 3. **差速PID**:动态平衡左右轮速差,防止单侧打滑[^2]。 4. **抗抖PID**:加入低通滤波器抑制高频抖动(如引用3中舵机抖动问题)。 #### 4. **传感器融合与状态估计** - **编码器反馈**:测量实际轮速,闭环控制差速精度。 - **IMU数据**:通过陀螺仪检测横摆角速度,修正转向过度或不足。 - **数据融合**:使用卡尔曼滤波融合多传感器数据,提高状态估计鲁棒性。 #### 5. **实现步骤** 1. **仿真验证**:在MATLAB/Simulink或ROS中搭建动力学模型,测试差速算法。 2. **实车调参**:逐步提升直道速度,优化弯道降速比例(如弯道速度=直道速度×70%)。 3. **抗干扰设计**:加入紧急制动逻辑,当检测到剧烈滑移时,短暂降速恢复抓地力。 #### 6. **典型问题与优化** - **舵机抖动**:降低转向PID的微分增益,或增加机械阻尼。 - **弯道失速**:采用“入弯减速,出弯预加速”策略,平衡能量效率。 - **S弯震荡**:引入模糊控制,根据曲率变化率动态调整PID参数。
评论 19
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

-chu_kuang-

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值