BA与图优化-SLAM十四讲学习笔记

博客主要介绍了BA(Bundle Adjustment)算法,它用于从视觉图像中提炼最优3D模型和相机参数。还阐述了其误差模型和代价函数,因H矩阵计算量大,需分析其特殊结构加速求解。同时讨论了H矩阵的稀疏性,以及利用Schur消元进行边缘化处理。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

  • BA

  • 稀疏性

  • 边缘化


BA

BA是指视觉图像中提炼出最优的3D模型和相机参数。意思就是从特征点发射的光束,通过调整相机位姿或者特征点的空间位置使光线汇聚到相机的光心,这个过程叫做BA。

 

 

 对于这个用到相机外参(R,t),以及如何投至归一化平面以及考虑畸变的详细情况笔者在这里就不再做赘述。上面的这个流程图描述了路标从世界坐标系转换为相机坐标系的过程只不过把之前的相机畸变的过程考虑进来了。其实这个过程就是观测方程。

 以观测模型为例,上式的x指代相机位姿,即外参R,t,它对应的是李群为T,李代数为\xi。路标y即为三维点p,观测数据的像素坐标为\boldsymbol{z} \stackrel{\text { def }}{=}\left[u_{s}, v_{s}\right]^{\mathrm{T}}。则从最小二乘角度,观测误差为

 上式只是一个误差模型,现在我们将之前其他时刻观测量考虑起来,那么整体的代价函数为:

 这里需要注意的是BA是把两者全部都放在一起进行优化。因此误差函数的值受两个因素影响:一个是相机姿态,一个是所谓路标点(也就是特征点)。因此可以求误差函数关于二者的偏导数,也就是之前所述的两个偏导数,2*6的那个雅克比矩阵是误差对于扰动的小量位姿的偏导数;2*3的那个雅克比矩阵是误差对于特征点相机坐标系下坐标的偏导数,它再乘以一个3*3的R得到一个2*3的雅克比矩阵就是误差关于特征点世界坐标系下坐标的偏导数。

推荐一个博主感觉总结的很到位:

SLAM14讲学习笔记(七)后端(BA与图优化,Pose Graph优化的理论与公式详解、因子图优化)

 上式是表示整个代价函数在i,j状态下的误差,以及偏导,现在我们我们把相机位姿变量和空间点的变量都放在一起:

 那么对之前的目标函数简化可得:

 由于我们把变量归类成了位姿和空间点两种,(注意E和F必须是整体目标函数对整体变量的导数,它是一个很大的矩阵,里面都是有每个误差项的导数F_{i j}E_{i j}拼凑起来的)则雅克比矩阵可以分块为:

 现在以高斯牛顿法为例,则H矩阵为:

 现在的问题是,这个H矩阵太大了,如果一幅图上有上百个特征点,这个矩阵就是上万*上万的矩阵了,这时通过H^{-}来求\bigtriangleupx则计算量太大了。所以我们得分析这个H矩阵,利用他的特殊结构来加速求解过程。

稀疏性

这个J表示误差对于第T_{i}个位姿看到第p_{j}个路标点的误差,前面的是对于位姿的,后面的是对于路标点的。只涉及第i个相机位姿和第j个路标点,对其余部分的变量导数为0;

现在我们来讨论H,因为Jij只有在ij处有非零块那么则使得H矩阵也仅有4个非零块位于(i,i),(i,j),(j,i),(j,ji)。(图中角标写错了应该将jk换回ij)

 

 

 边缘化

现在我们搞清楚H这种稀疏结构,用这个性质来求\boldsymbol{H} \Delta \boldsymbol{x}=\boldsymbol{g}。Schur消元

 到目前为止,还没有利用它的稀疏特性。虽然C是稀疏的,但是ET这里不稀疏啊,这个矩阵求解会十分困难。高博处理的方式是把左上角E的东西统统处理到B那里:

 整理得:

 方程第一行整理一下就可以得到关于位姿部分的增量方程:

 

 

 

<think>嗯,用户让我介绍一下ORB-SLAM2的学习笔记。我需要先回忆一下ORB-SLAM2的基本框架和核心部分。ORB-SLAM2是一个比较经典的视觉SLAM系统,分为几个主要模块:特征提取、跟踪、局部建图、回环检测和地图管理。首先,我应该从系统架构开始介绍,说明各个模块的作用和相互关系。 接下来,用户可能需要了解ORB特征的相关内容。ORB特征结合了FAST关键点检测和BRIEF描述子,具有旋转不变性和一定的尺度不变性。这部分需要详细解释ORB特征的提取过程,包括如何构建图像金字塔,计算方向,生成描述子等步骤。 然后是跟踪线程,也就是Tracking部分。这里需要说明如何通过帧间匹配、运动模型或重定位来估计相机位姿。可能需要提到初始化的过程,比如使用单应矩阵或基础矩阵来恢复运动,以及如何三角化初始地图点。 局部建图模块负责处理新的关键帧,剔除冗余点,进行局部BA优化。这部分需要解释BA(Bundle Adjustment)的概念,以及如何优化相机位姿和地图点。同时,还要提到关键帧的选择策略,比如根据共视点数量或时间间隔来决定是否插入新的关键帧。 回环检测和地图融合部分也是重点。这里需要讲DBoW2的词袋模型,如何通过视觉词典检测回环,然后进行Sim3优化来校正漂移。此外,还要说明全局BA优化在回环校正后的作用,以及如何优化整个地图的一致性。 ORB-SLAM2支持单目、双目和RGB-D相机,需要比较不同传感器下的系统表现。比如单目初始化困难,存在尺度不确定性,而双目和RGB-D可以直接获取深度信息,初始化更简单。 在优缺点分析方面,优点包括实时性高、支持多传感器、具备回环检测和重定位能力。缺点可能有对动态环境敏感,单目模式下尺度问题,以及特征提取在纹理缺失区域效果差。可以提到后续的ORB-SLAM3在IMU融合和多地图系统上的改进。 最后,学习建议部分应该推荐一些资源,比如论文、代码库、书籍和课程。同时建议从基础开始,动手实践,并参社区讨论。 需要注意的是,用户可能希望了解实际应用中的问题,比如如何调整参数,处理特定场景的挑战,或者如何扩展ORB-SLAM2的功能。不过根据用户的问题,主要是介绍学习笔记,所以需要结构清晰,分点说明,确保覆盖主要模块和关键点。 可能还需要检查LaTeX格式是否正确,比如公式是否用$或$$包裹,变量是否正确。例如,提到BA优化时,可以写目标函数是$$\min \sum \| \pi(X, T) - x \|^2$$,其中$T$是位姿,$X$是地图点。确保这些公式的格式正确。 总之,我需要按照系统架构、特征提取、跟踪、局部建图、回环检测、多传感器支持、优缺点、学习建议的结构来组织内容,使用清晰的中文,正确插入公式,并确保技术细节准确。</think>以下为ORB-SLAM2学习笔记的整理,按模块分阶段说明: --- ### 一、系统架构 $$ \text{ORB-SLAM2} = \text{Tracking} + \text{Local Mapping} + \text{Loop Closing} + \text{Map} $$ 三大线程并行运行: 1. **Tracking线程**:实时估计相机位姿($T_{cw} \in SE(3)$) 2. **Local Mapping线程**:局部BA优化地图点维护 3. **Loop Closing线程**:回环检测全局优化 --- ### 二、ORB特征提取 - **FAST关键点检测**:阈值化像素差异($|I_p - I_{center}| > \delta$) - **BRIEF描述子**:二进制编码(256-bit,汉明距离匹配) - **改进特性**: - 图像金字塔实现尺度不变性($n$层缩放,比例因子$s=1.2$) - 灰度质心法计算方向($m_{10}=\sum xI(x,y), m_{01}=\sum yI(x,y)$) --- ### 三、跟踪线程(Tracking) 1. **初始位姿估计**: - 通过上一帧运动模型预测:$T_{k} = T_{k-1} \cdot T_{k-1}^{k}$ - 或通过特征匹配PnP求解:$\min_T \sum \| \pi(T \cdot X_i) - x_i \|^2$ 2. **关键帧判定**: - 跟踪质量下降(匹配点 < 阈值) - 距离上一关键帧超过20帧 --- ### 四、局部建图(Local Mapping) 1. **局部BA优化**: $$ \min_{T_i, X_j} \sum \| \pi(T_i \cdot X_j) - x_{ij} \|^2 + \rho(\| T_i^{-1}T_j \|) $$ -优化当前关键帧及其共视关键帧 2. **地图点剔除**: - 观测次数 < 2次 - 重投影误差 > $\chi^2$阈值($\chi^2_{0.95}=5.991$) --- ### 五、回环检测(Loop Closing) 1. **词袋模型(DBoW2)**: - 离线训练视觉词典(k-means树结构) - 计算相似性得分:$s = \frac{\langle v_q, v_t \rangle}{\|v_q\| \|v_t\|}$ 2. **Sim3优化**: $$ \min_{S} \sum \| \pi(S \cdot X_i) - x_i \|^2 + \| \pi(S^{-1} \cdot X_j') - x_j' \|^2 $$ - 解决尺度漂移问题($S \in Sim(3)$) --- ### 六、多传感器支持 | 传感器类型 | 初始化方式 | 深度获取方法 | |------------|---------------------|-----------------------| | 单目 | 分解H/F矩阵 | 三角化(需运动) | | 双目/RGB-D | 直接构造深度图 | 视差/深度传感器 | --- ### 七、优缺点分析 - **优点**: - 实时性(30fps,GTX 1070) - 支持重定位动态场景处理 - **缺点**: - 依赖特征匹配(纹理缺失易失效) - 单目模式需10秒以上初始化 --- ### 八、学习建议 1. **必读文献**: - 原论文《ORB-SLAM2: An Open-Source SLAM System for Monocular, Stereo and RGB-D Cameras》 - 《Multiple View Geometry in Computer Vision》 2. **代码实践**: ```bash git clone https://github.com/raulmur/ORB_SLAM2 cd ORB_SLAM2 && chmod +x build.sh && ./build.sh ``` 3. **调试工具**: - 使用g2o_viewer可视化优化结果 - 分析`KeyFrame::EraseMapPointMatch()`等关键函数 --- 以上内容需结合代码阅读(推荐使用CLion或VSCode调试),重点关注`Tracking.cc`和`Optimizer.cc`模块。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值