阶跃函数的导数为什么是冲击函数 The derivative of heaviside step function is delta function

如果我今天没搞懂这个,我估计我会抑郁到不能睡觉。

heaviside step function 就是所谓的阶跃函数:

定义

图像:


dirac delta function 狄利克雷函数,通常所说的冲击函数:

定义:


函数图像:



提出问题:

为什么heaviside step 函数的导数就是 dirac delta 函数呢?


感觉上是挺“靠谱”。阶跃函数嘛,在0点左右两侧导数都是0,然后0点导数无穷大,和delta函数对应得很好。

数学不是所谓“靠谱”就能搞定的。要证明,当然。。。我个数学渣渣,证明完全不行,而且各种大牛都已经证明过了。

只是。。。证明过的我都差点没看懂。于是,留下这篇blog,叨叨这个“为什么”,以及这个证明过程中,

我遇到的困惑,和怎么解决的。


看看这段话吧,

If  D  is a distribution, we want to define another distribution  D , its distributional derivative. This done by declaring  D  by  (D)(f)=D(f)

more generally, the  n -th distributional derivative  D(n)  of  D  is defined by  (D(n))(f)=(1)n(f(n)) . This is ok, since we assumed the test functions  f  

to be infinitely differentiable; it follows that distributions are infinitely differentiable (in another, in this sense). Notice the minus sign. This is because 

we want distributional derivatives to extend the ordinary derivative, notice that if  d  is differentiable,  Rd(x)f(x)dx=Rd(x)f(x)dx  since the

 boundary term vanishes by the decay condition imposed on the test functions  f .


看懂了也就知道为什么了,如果没看懂,那这篇blog还可以继续看下去。。。


我遇到的问题就是为什么

会有如此“操蛋”的事情捏。。。。。完全不符合分布积分的公式哇。。。(v*u)' = v'*u + v*u'


之后是各种苦恼。


Nothing to it.


注意这里是用了分布积分公式的!只是有一项被略去了,因为等于0!


H(x)是阶跃函数,那个希腊字母(x)是速降函数(不知道什么叫速降函数,其实就是指数函数,系数是负数)

这两个函数的乘积在正负无穷远处的值都是0,于是正无穷处的值减去负无穷处的值,0 - 0 = 0

于是就有  0    



理所当然的就有了上面的积分等式


我们用一种简单的标记方式来表示 ---->      <a , b'>


于是

Rd(x)f(x)dx=Rd(x)f(x)


b的导数就是狄利克雷函数,有木有!b是什么,阶跃函数!

阶跃函数的导数就是狄利克雷函数,证明完毕!

开心,睡觉


The . L

 于 XTU  2014.03.13 凌晨

这个函数 `f(t)` 是由两部分组成的复合函数:第一部分 `(2 + (2/3)t)` 是关于时间 `t` 的线性增长函数,第二部分 `u(t) - u(t-3)` 是单位阶跃函数 `u()` 在 `t` 和 `t-3` 之间的差异。`u(t)` 表示当 `t >= 0` 时取值为1,否则为0。 要求该函数导数,我们需要分别对这两部分求导,并考虑到 `u(t)` 的性质。因为 `u(t)` 的导数实际上是delta函数 `&delta;(t)`(即只在`t=0`处有值),所以 `u'(t)` 的表达式会变得非常简单。 以下是MATLAB代码来计算 `f(t)` 的导数 `f'(t)`: ```matlab % 定义时间范围 t = linspace(0, 6, 1000); % 例如从0到6,采样点1000个 % 定义线性函数 linear_part = 2 + (2/3)*t; % 定义单位阶跃函数 unit_step = heaviside(t); % heaviside函数在MATLAB中表示单位阶跃函数 shifted_unit_step = heaviside(t - 3); % 计算 f(t) f_t = linear_part .* (unit_step - shifted_unit_step); % 注意这里需要元素乘法 * % 计算 f'(t) df_dt = (2/3) * linear_part; % 线性函数导数是一个常数,直接相乘 % 绘制原始函数导数 figure; plot(t, f_t, 'b', 'LineWidth', 2, 'DisplayName', 'f(t)'); hold on; plot(t, df_dt, 'r', 'LineWidth', 2, 'DisplayName', 'f'(t)'); legend('show'); xlabel('t'); ylabel('f(t) / f'(t)'); title('Function f(t) and its derivative'); grid on; ``` 注意,上述代码假设 `heaviside()` 函数已包含在你的MATLAB环境中。如果你使用的是较旧版本,可能会需要安装额外的工具箱或使用 `signum()` 函数替代。
评论 8
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值