同构和异构经典图神经网络汇总+pytorch代码

本文汇总了关于图神经网络的优质资源,包括GCN、GAT、GraphSAGE的理论解析及代码实现,并介绍了异构图神经网络RGCN和HGT的概念及应用。提供了PyTorch相关的代码示例,帮助读者深入理解图神经网络在处理同构和异构图上的差异。同时,还分享了PyG的学习心得和安装指南。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

收集一些讲解比较好的博客或者知乎文档,以及对应的代码

1、同构图神经网络-GCN/GAT/GraphSAGE

2、异构图神经网络-RGCN/HGT

3、pytorch相关代码

建议下载好DBLP数据集后,合并下面的RGCN和HGT代码到一个项目里面进行效果对比

4、pytorch学习相关

# GPF ## 一、GPF(Graph Processing Flow):利用图神经网络处理问题的一般化流程 1、图节点预表示:利用NE框架,直接获得全图每个节点的Embedding; 2、正负样本采样:(1)单节点样本;(2)节点对样本; 3、抽取封闭子图:可做类化处理,建立一种通用图数据结构; 4、子图特征融合:预表示、节点特征、全局特征、边特征; 5、网络配置:可以是图输入、图输出的网络;也可以是图输入,分类/聚类结果输出的网络; 6、训练测试; ## 二、主要文件: 1、graph.py:读入图数据; 2、embeddings.py:预表示学习; 3、sample.py:采样; 4、subgraphs.py/s2vGraph.py:抽取子图; 5、batchgraph.py:子图特征融合; 6、classifier.py:网络配置; 7、parameters.py/until.py:参数配置/帮助文件; ## 三、使用 1、在parameters.py中配置相关参数(可默认); 2、在example/文件夹中运行相应的案例文件--包括链接预测、节点状态预测; 以链接预测为例: ### 1、导入配置参数 ```from parameters import parser, cmd_embed, cmd_opt``` ### 2、参数转换 ``` args = parser.parse_args() args.cuda = not args.noCuda and torch.cuda.is_available() torch.manual_seed(args.seed) if args.cuda: torch.cuda.manual_seed(args.seed) if args.hop != 'auto': args.hop = int(args.hop) if args.maxNodesPerHop is not None: args.maxNodesPerHop = int(args.maxNodesPerHop) ``` ### 3、读取数据 ``` g = graph.Graph() g.read_edgelist(filename=args.dataName, weighted=args.weighted, directed=args.directed) g.read_node_status(filename=args.labelName) ``` ### 4、获取全图节点的Embedding ``` embed_args = cmd_embed.parse_args() embeddings = embeddings.learn_embeddings(g, embed_args) node_information = embeddings #print node_information ``` ### 5、正负节点采样 ``` train, train_status, test, test_status = sample.sample_single(g, args.testRatio, max_train_num=args.maxTrainNum) ``` ### 6、抽取节点对的封闭子图 ``` net = until.nxG_to_mat(g) #print net train_graphs, test_graphs, max_n_label = subgraphs.singleSubgraphs(net, train, train_status, test, test_status, args.hop, args.maxNodesPerHop, node_information) print('# train: %d, # test: %d' % (len(train_graphs), len(test_graphs))) ``` ### 7、加载网络模型,并在classifier中配置相关参数 ``` cmd_args = cmd_opt.parse_args() cmd_args.feat_dim = max_n_label + 1 cmd_args.attr_dim = node_information.shape[1] cmd_args.latent_dim = [int(x) for x in cmd_args.latent_dim.split('-')] if len(cmd_args.latent_dim) == 1: cmd_args.latent_dim = cmd_args.latent_dim[0] model = classifier.Classifier(cmd_args) optimizer = optim.Adam(model.parameters(), lr=args.learningRate) ``` ### 8、训练测试 ``` train_idxes = list(range(len(train_graphs))) best_loss = None for epoch in range(args.num_epochs): random.shuffle(train_idxes) model.train() avg_loss = loop_dataset(train_graphs, model, train_idxes, cmd_args.batch_size, optimizer=optimizer) print('\033[92maverage training of epoch %d: loss %.5f acc %.5f auc %.5f\033[0m' % (epoch, avg_loss[0], avg_loss[1], avg_loss[2])) model.eval() test_loss = loop_dataset(test_graphs, model, list(range(len(test_graphs))), cmd_args.batch_size) print('\033[93maverage test of epoch %d: loss %.5f acc %.5f auc %.5f\033[0m' % (epoch, test_loss[0], test_loss[1], test_loss[2])) ``` ### 9、运行结果 ``` average test of epoch 0: loss 0.62392 acc 0.71462 auc 0.72314 loss: 0.51711 acc: 0.80000: 100%|███████████████████████████████████| 76/76 [00:07<00:00, 10.09batch/s] average training of epoch 1: loss 0.54414 acc 0.76895 auc 0.77751 loss: 0.37699 acc: 0.79167: 100%|█████████████████████████████████████| 9/9 [00:00<00:00, 34.07batch/s] average test of epoch 1: loss 0.51981 acc 0.78538 auc 0.79709 loss: 0.43700 acc: 0.84000: 100%|███████████████████████████████████| 76/76 [00:07<00:00, 9.64batch/s] average training of epoch 2: loss 0.49896 acc 0.79184 auc 0.82246 loss: 0.63594 acc: 0.66667: 100%|█████████████████████████████████████| 9/9 [00:00<00:00, 28.62batch/s] average test of epoch 2: loss 0.48979 acc 0.79481 auc 0.83416 loss: 0.57502 acc: 0.76000: 100%|███████████████████████████████████| 76/76 [00:07<00:00, 9.70batch/s] average training of epoch 3: loss 0.50005 acc 0.77447 auc 0.79622 loss: 0.38903 acc: 0.75000: 100%|█████████████████████████████████████| 9/9 [00:00<00:00, 34.03batch/s] average test of epoch 3: loss 0.41463 acc 0.81132 auc 0.86523 loss: 0.54336 acc: 0.76000: 100%|███████████████████████████████████| 76/76 [00:07<00:00, 9.57batch/s] average training of epoch 4: loss 0.44815 acc 0.81711 auc 0.84530 loss: 0.44784 acc: 0.70833: 100%|█████████████████████████████████████| 9/9 [00:00<00:00, 28.62batch/s] average test of epoch 4: loss 0.48319 acc 0.81368 auc 0.84454 loss: 0.36999 acc: 0.88000: 100%|███████████████████████████████████| 76/76 [00:07<00:00, 10.17batch/s] average training of epoch 5: loss 0.39647 acc 0.84184 auc 0.89236 loss: 0.15548 acc: 0.95833: 100%|█████████████████████████████████████| 9/9 [00:00<00:00, 28.62batch/s] average test of epoch 5: loss 0.30881 acc 0.89623 auc 0.95132 ```
### 配置大模型以同时利用CPUGPU进行计算 #### TensorFlow混合精度训练设置 为了使大规模机器学习模型能够充分利用硬件资源,在TensorFlow中可以通过设定策略来实现CPU与GPU间的协同工作。对于现代版本的TensorFlow而言,支持自动选择设备完成特定操作,并允许开发者通过`tf.distribute.MirroredStrategy()`轻松构建多GPU环境下的分布式训练方案[^1]。 当涉及到既使用CPU又调用GPU的情况时,一种常见做法是在程序启动初期定义逻辑设备命名规则以及显式指派某些层或节点到指定位置上运行: ```python import tensorflow as tf # 创建一个跨多个GPU的分布策略对象 strategy = tf.distribute.MirroredStrategy() with strategy.scope(): # 构建模型结构 model = ... # 编译模型 optimizer = tf.keras.optimizers.Adam() loss_fn = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True) model.compile(optimizer=optimizer, loss=loss_fn) ``` 上述代码片段展示了如何创建一个能够在单机内所有可用GPU之间共享负载的工作流;然而,如果希望进一步引入CPU参与其中,则需考虑更为复杂的任务划分方式,比如让部分预处理步骤或者轻量级推理环节交由CPU负责,而密集型数值运算留给GPU处理。 #### PyTorch CPU-GPU协作模式 PyTorch提供了灵活的数据并行机制——DataParallel类,它可以在不改变原有网络定义的前提下快速开启多卡加速功能。不过值得注意的是,默认情况下该方法仅适用于同构设备间(即全部为相同类型的GPU)。要达成异构平台上的联合部署效果,通常建议采用更加细粒度的手动控制手段,像下面这样: ```python import torch from torch import nn device_ids = [] # 定义使用的设备列表,可包含'cuda:x'(x表示第几张显卡) 'cpu' if torch.cuda.is_available(): device_ids += ['cuda:%d'%i for i in range(torch.cuda.device_count())] class MyModel(nn.Module): def __init__(self): super(MyModel,self).__init__() self.cpu_part = ... # 将一些组件放在CPU上 self.gpu_parts = [...] # 其他重要模块则放置于GPU def forward(self,x): x = self.cpu_part(x.to('cpu')) # 显式转换输入张量至对应设备 results = [] for part,gpu_id in zip(self.gpu_parts,device_ids): with torch.cuda.device(gpu_id): # 切换当前默认CUDA设备 y = part(x).to('cpu') # 执行完后再转回主机内存以便后续汇总 results.append(y) final_output = sum(results)/len(results)# 对各分支输出求平均作为最终预测值 return final_output net = DataParallel(MyModel(),device_ids=device_ids) ``` 这段脚本说明了怎样自定义神经网络类,使得一部分构件始终驻留在中央处理器之上运作,其余关键路径被分发给不同图形芯片独立承担,从而达到最佳性能平衡状态。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值