基于含注意力机制的编码器—解码器来进行机器翻译

一、介绍

       当我们谈论机器翻译时,我们指的是利用计算机和人工智能技术来将一种语言的文本自动转换成另一种语言的过程。机器翻译的发展源远流长,从最早的基于规则的方法发展到如今基于统计和神经网络的先进技术。

       机器翻译的主要目标是消除语言障碍,帮助人们在不同语言之间进行有效的沟通和理解。它在国际贸易、跨文化交流、科学研究等领域发挥着重要作用。随着人工智能技术的进步,机器翻译系统在翻译质量和速度上都有了显著提升,尽管仍然面临一些挑战,如语义理解和文化差异的准确处理。

       机器翻译系统通常依靠大规模语料库进行训练,这些语料库包含大量的平行语料(即同一内容的不同语言版本)。通过深度学习和神经网络,系统能够学习语言的复杂模式和结构,从而提高翻译的准确性和自然度。

        然而,即使是最先进的机器翻译技术也不完美,特别是在处理语言的语境、语义和文化特征时,仍然需要人工的干预和调整。因此,机器翻译可以视为人类翻译的有力辅助工具,能够加速翻译流程并提高效率,但在某些情况下,仍然需要人类翻译员的专业知识和判断力。

        当涉及机器翻译时,含有注意力机制的编码器-解码器架构是目前最先进的方法之一。这种架构结合了编码器和解码器,并利用注意力机制来有效地处理长距离依赖和提升翻译质量。因为一段文本序列在不同语言中的长度不一定相同,所以我们使用机器翻译为例来介绍编码器—解码器和注意力机制的应用。

二、读取和预处理数据

       我们先定义一些特殊符号。其中“<pad>”(padding)符号用来添加在较短序列后,直到每个序列等长,而“<bos>”和“<eos>”符号分别表示序列的开始和结束。

!tar -xf d2lzh_pytorch.tar
import collections
import os
import io
import math
import torch
from torch import nn
import torch.nn.functional as F
import torchtext.vocab as Vocab
import torch.utils.data as Data

import sys
# sys.path.append("..") 
import d2lzh_pytorch as d2l

PAD, BOS, EOS = '<pad>', '<bos>', '<eos>'
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

print(torch.__version__, device)
1.5.0 cpu

由于本次实验训练的数据集不多,可以看到我们目前的编程环境还是依靠CPU来计算的

接着定义两个辅助函数对后面读取的数据进行预处理。

# 将一个序列中所有的词记录在all_tokens中以便之后构造词典,然后在该序列后面添加PAD直到序列
# 长度变为max_seq_len,然后将序列保存在all_seqs中
def process_one_seq(seq_tokens, all_tokens, all_seqs, max_seq_len):
    # 将当前序列中的词加入到all_tokens中,用于之后构建词典
    all_tokens.extend(seq_tokens)
    
    # 在当前序列末尾添加终止符EOS,并填充PAD直到序列长度达到max_seq_len
    seq_tokens += [EOS] + [PAD] * (max_seq_len - len(seq_tokens) - 1)
    
    # 将处理后的序列加入到all_seqs中
    all_seqs.append(seq_tokens)

# 使用所有的词来构造词典。并将所有序列中的词变换为词索引后构造Tensor
def build_data(all_tokens, all_seqs):
    # 使用collections.Counter统计词频,构建词典Vocab,并包含特殊符号[PAD, BOS, EOS]
    vocab = Vocab.Vocab(collections.Counter(all_tokens),
                        specials=[PAD, BOS, EOS])
    
    # 将所有序列中的词转换为对应的词索引,构成Tensor
    indices = [[vocab.stoi[w] for w in seq] for seq in all_seqs]
    
    # 返回构建好的词典vocab和将所有序列转换为索引表示的Tensor
    return vocab, torch.tensor(indices)

       为了演示方便,我们在这里使用一个很小的法语—英语数据集。在这个数据集里,每一行是一对法语句子和它对应的英语句子,中间使用'\t'隔开。在读取数据时,我们在句末附上“<eos>”符号,并可能通过添加“<pad>”符号使每个序列的长度均为max_seq_len。我们为法语词和英语词分别创建词典。法语词的索引和英语词的索引相互独立。

def read_data(max_seq_len):
    # in和out分别是input和output的缩写
    in_tokens, out_tokens, in_seqs, out_seqs = [], [], [], []
    
    # 打开文件,读取所有行
    with io.open('fr-en-small.txt') as f:
        lines = f.readlines()
    
    # 遍历每一行数据
    for line in lines:
        # 按制表符分割输入序列和输出序列
        in_seq, out_seq = line.rstrip().split('\t')
        
        # 将输入序列和输出序列分割成词列表
        in_seq_tokens, out_seq_tokens = in_seq.split(' '), out_seq.split(' ')
        
        # 如果加上EOS后长于max_seq_len,则忽略掉此样本
        if max(len(in_seq_tokens), len(out_seq_tokens)) > max_seq_len - 1:
            continue
        
        # 处理输入序列和输出序列,将它们加入到相应的token列表和序列列表中
        process_one_seq(in_seq_tokens, in_tokens, in_seqs, max_seq_len)
        process_one_seq(out_seq_tokens, out_tokens, out_seqs, max_seq_len)
    
    # 使用所有token构建输入词典和输出词典,同时将序列转换为TensorDataset返回
    in_vocab, in_data = build_data(in_tokens, in_seqs)
    out_vocab, out_data = build_data(out_tokens, out_seqs)
    
    # 返回输入词典、输出词典和输入输出数据的TensorDataset
    return in_vocab, out_vocab, Data.TensorDataset(in_data, out_data)

        将序列的最大长度设成7,然后查看读取到的第一个样本。该样本分别包含法语词索引序列和英语词索引序列。

max_seq_len = 7
in_vocab, out_vocab, dataset = read_data(max_seq_len)
dataset[0]
(tensor([ 5,  4, 45,  3,  2,  0,  0]), tensor([ 8,  4, 27,  3,  2,  0,  0]))

三、含注意力机制的编码器—解码器

1. 编码器

       在编码器中,我们将输入语言的词索引通过词嵌入层得到词的表征,然后输入到一个多层门控循环单元中。PyTorch的nn.GRU实例在前向计算后也会分别返回输出和最终时间步的多层隐藏状态。其中的输出指的是最后一层的隐藏层在各个时间步的隐藏状态,并不涉及输出层计算。注意力机制将这些输出作为键项和值项。

class Encoder(nn.Module):
    def __init__(self, vocab_size, embed_size, num_hiddens, num_layers,
                 drop_prob=0, **kwargs):
        super(Encoder, self).__init__(**kwargs)
        # Embedding层,将词索引映射为稠密向量表示
        self.embedding = nn.Embedding(vocab_size, embed_size)
        
        # GRU层,接收Embedding层的输出作为输入序列,输出隐含状态
        self.rnn = nn.GRU(embed_size, num_hiddens, num_layers, dropout=drop_prob)

    def forward(self, inputs, state):
        # 输入形状是(批量大小, 时间步数)。将输出互换样本维和时间步维
        embedding = self.embedding(inputs.long()).permute(1, 0, 2) # (seq_len, batch, input_size)
        
        # 将Embedding层的输出传入GRU层,同时传入状态state
        return self.rnn(embedding, state)

    def begin_state(self):
        # 返回初始状态,这里默认为None
        return None

       下面我们来创建一个批量大小为4、时间步数为7的小批量序列输入。设门控循环单元的隐藏层个数为2,隐藏单元个数为16。编码器对该输入执行前向计算后返回的输出形状为(时间步数, 批量大小, 隐藏单元个数)。门控循环单元在最终时间步的多层隐藏状态的形状为(隐藏层个数, 批量大小, 隐藏单元个数)。对于门控循环单元来说,state就是一个元素,即隐藏状态;如果使用长短期记忆,state是一个元组,包含两个元素即隐藏状态和记忆细胞。

encoder = Encoder(vocab_size=10, embed_size=8, num_hiddens=16, num_layers=2)
output, state = encoder(torch.zeros((4, 7)), encoder.begin_state())
output.shape, state.shape # GRU的state是h, 而LSTM的是一个元组(h, c)
(torch.Size([7, 4, 16]), torch.Size([2, 4, 16]))

2. 注意力机制

       我们将实现1注意力机制中定义的函数𝑎𝑎:将输入连结后通过含单隐藏层的多层感知机变换。其中隐藏层的输入是解码器的隐藏状态与编码器在所有时间步上隐藏状态的一一连结,且使用tanh函数作为激活函数。输出层的输出个数为1。两个Linear实例均不使用偏差。其中函数𝑎𝑎定义里向量𝑣𝑣的长度是一个超参数,即attention_size

def attention_model(input_size, attention_size):
    # 创建一个Sequential模型,用于堆叠多个层
    model = nn.Sequential(
        nn.Linear(input_size, attention_size, bias=False),  # 第一层:线性变换,输入大小为input_size,输出大小为attention_size
        nn.Tanh(),  # 第二层:Tanh激活函数,增加非线性能力
        nn.Linear(attention_size, 1, bias=False)  # 第三层:线性变换,输入大小为attention_size,输出大小为1
    )
    return model

       注意力机制的输入包括查询项、键项和值项。设编码器和解码器的隐藏单元个数相同。这里的查询项为解码器在上一时间步的隐藏状态,形状为(批量大小, 隐藏单元个数);键项和值项均为编码器在所有时间步的隐藏状态,形状为(时间步数, 批量大小, 隐藏单元个数)。注意力机制返回当前时间步的背景变量,形状为(批量大小, 隐藏单元个数)。

def attention_forward(model, enc_states, dec_state):
    """
    enc_states: (时间步数, 批量大小, 隐藏单元个数)
    dec_state: (批量大小, 隐藏单元个数)
    """
    # 将解码器隐藏状态广播到和编码器隐藏状态形状相同后进行连结
    dec_states = dec_state.unsqueeze(dim=0).expand_as(enc_states)
    enc_and_dec_states = torch.cat((enc_states, dec_states), dim=2)
    e = model(enc_and_dec_states)  # 形状为(时间步数, 批量大小, 1)
    alpha = F.softmax(e, dim=0)  # 在时间步维度做softmax运算
    return (alpha * enc_states).sum(dim=0)  # 返回背景变量

      在下面的例子中,编码器的时间步数为10,批量大小为4,编码器和解码器的隐藏单元个数均为8。注意力机制返回一个小批量的背景向量,每个背景向量的长度等于编码器的隐藏单元个数。因此输出的形状为(4, 8)。

seq_len, batch_size, num_hiddens = 10, 4, 8
model = attention_model(2*num_hiddens, 10) 
enc_states = torch.zeros((seq_len, batch_size, num_hiddens))
dec_state = torch.zeros((batch_size, num_hiddens))
attention_forward(model, enc_states, dec_state).shape
torch.Size([4, 8])

3. 含注意力机制的解码器

       我们直接将编码器在最终时间步的隐藏状态作为解码器的初始隐藏状态。这要求编码器和解码器的循环神经网络使用相同的隐藏层个数和隐藏单元个数。

       在解码器的前向计算中,我们先通过刚刚介绍的注意力机制计算得到当前时间步的背景向量。由于解码器的输入来自输出语言的词索引,我们将输入通过词嵌入层得到表征,然后和背景向量在特征维连结。我们将连结后的结果与上一时间步的隐藏状态通过门控循环单元计算出当前时间步的输出与隐藏状态。最后,我们将输出通过全连接层变换为有关各个输出词的预测,形状为(批量大小, 输出词典大小)。

class Decoder(nn.Module):
    def __init__(self, vocab_size, embed_size, num_hiddens, num_layers,
                 attention_size, drop_prob=0):
        super(Decoder, self).__init__()
        self.embedding = nn.Embedding(vocab_size, embed_size)
        self.attention = attention_model(2*num_hiddens, attention_size)
        # GRU的输入包含attention输出的c和实际输入, 所以尺寸是 num_hiddens+embed_size
        self.rnn = nn.GRU(num_hiddens + embed_size, num_hiddens, 
                          num_layers, dropout=drop_prob)
        self.out = nn.Linear(num_hiddens, vocab_size)

    def forward(self, cur_input, state, enc_states):
        """
        cur_input shape: (batch, )
        state shape: (num_layers, batch, num_hiddens)
        """
        # 使用注意力机制计算背景向量
        c = attention_forward(self.attention, enc_states, state[-1])
        # 将嵌入后的输入和背景向量在特征维连结, (批量大小, num_hiddens+embed_size)
        input_and_c = torch.cat((self.embedding(cur_input), c), dim=1) 
        # 为输入和背景向量的连结增加时间步维,时间步个数为1
        output, state = self.rnn(input_and_c.unsqueeze(0), state)
        # 移除时间步维,输出形状为(批量大小, 输出词典大小)
        output = self.out(output).squeeze(dim=0)
        return output, state

    def begin_state(self, enc_state):
        # 直接将编码器最终时间步的隐藏状态作为解码器的初始隐藏状态
        return enc_state

4. 训练模型

      我们先实现batch_loss函数计算一个小批量的损失。解码器在最初时间步的输入是特殊字符BOS。之后,解码器在某时间步的输入为样本输出序列在上一时间步的词,即强制教学。此外,同word2vec中的实现一样,我们在这里也使用掩码变量避免填充项对损失函数计算的影响。

def batch_loss(encoder, decoder, X, Y, loss):
    batch_size = X.shape[0]
    enc_state = encoder.begin_state()
    enc_outputs, enc_state = encoder(X, enc_state)
    # 初始化解码器的隐藏状态
    dec_state = decoder.begin_state(enc_state)
    # 解码器在最初时间步的输入是BOS
    dec_input = torch.tensor([out_vocab.stoi[BOS]] * batch_size)
    # 我们将使用掩码变量mask来忽略掉标签为填充项PAD的损失, 初始全1
    mask, num_not_pad_tokens = torch.ones(batch_size,), 0
    l = torch.tensor([0.0])
    for y in Y.permute(1,0): # Y shape: (batch, seq_len)
        dec_output, dec_state = decoder(dec_input, dec_state, enc_outputs)
        l = l + (mask * loss(dec_output, y)).sum()
        dec_input = y  # 使用强制教学
        num_not_pad_tokens += mask.sum().item()
        # EOS后面全是PAD. 下面一行保证一旦遇到EOS接下来的循环中mask就一直是0
        mask = mask * (y != out_vocab.stoi[EOS]).float()
    return l / num_not_pad_tokens

在训练函数中,我们需要同时迭代编码器和解码器的模型参数。

def train(encoder, decoder, dataset, lr, batch_size, num_epochs):
    # 定义编码器和解码器的优化器,使用Adam优化器
    enc_optimizer = torch.optim.Adam(encoder.parameters(), lr=lr)
    dec_optimizer = torch.optim.Adam(decoder.parameters(), lr=lr)

    # 定义损失函数,这里使用交叉熵损失,并设置为每个样本的损失
    loss = nn.CrossEntropyLoss(reduction='none')

    # 创建数据迭代器,用于批量读取数据
    data_iter = Data.DataLoader(dataset, batch_size, shuffle=True)

    # 开始训练循环
    for epoch in range(num_epochs):
        l_sum = 0.0  # 初始化损失总和

        # 遍历数据迭代器,每次读取一个批量的数据
        for X, Y in data_iter:
            # 梯度清零
            enc_optimizer.zero_grad()
            dec_optimizer.zero_grad()

            # 计算当前批量的损失
            l = batch_loss(encoder, decoder, X, Y, loss)

            # 反向传播计算梯度
            l.backward()

            # 更新编码器和解码器的参数
            enc_optimizer.step()
            dec_optimizer.step()

            # 累加当前批量的损失
            l_sum += l.item()

        # 每隔10个epoch打印一次当前损失
        if (epoch + 1) % 10 == 0:
            print("epoch %d, loss %.3f" % (epoch + 1, l_sum / len(data_iter)))

接下来,创建模型实例并设置超参数。然后,我们就可以训练模型了。

embed_size, num_hiddens, num_layers = 64, 64, 2
attention_size, drop_prob, lr, batch_size, num_epochs = 10, 0.5, 0.01, 2, 50
encoder = Encoder(len(in_vocab), embed_size, num_hiddens, num_layers,
                  drop_prob)
decoder = Decoder(len(out_vocab), embed_size, num_hiddens, num_layers,
                  attention_size, drop_prob)
train(encoder, decoder, dataset, lr, batch_size, num_epochs)
epoch 10, loss 0.463
epoch 20, loss 0.211
epoch 30, loss 0.091
epoch 40, loss 0.017
epoch 50, loss 0.013

5.  预测不定长的序列

这里我们通过最简单的贪婪搜索来实现预测。

def translate(encoder, decoder, input_seq, max_seq_len):
    # 将输入序列分割为词元列表,并添加EOS和PAD直到序列长度为max_seq_len
    in_tokens = input_seq.split(' ')
    in_tokens += [EOS] + [PAD] * (max_seq_len - len(in_tokens) - 1)
    
    # 将输入序列转换为索引张量,batch大小为1
    enc_input = torch.tensor([[in_vocab.stoi[tk] for tk in in_tokens]])  # 输入张量 (1, max_seq_len)
    
    # 初始化编码器的初始状态
    enc_state = encoder.begin_state()
    
    # 编码器进行前向传播,获取编码器输出和最终状态
    enc_output, enc_state = encoder(enc_input, enc_state)
    
    # 初始化解码器的输入为起始符号BOS的索引
    dec_input = torch.tensor([out_vocab.stoi[BOS]])  # 起始符号的索引
    
    # 使用编码器的最终状态初始化解码器的初始状态
    dec_state = decoder.begin_state(enc_state)
    
    output_tokens = []  # 存储翻译后的输出词元
    
    # 开始解码过程,最多进行max_seq_len次解码
    for _ in range(max_seq_len):
        # 解码器进行前向传播,计算当前时间步的输出和新的状态
        dec_output, dec_state = decoder(dec_input, dec_state, enc_output)
        
        # 预测输出的最大值索引,即预测的下一个词的索引
        pred = dec_output.argmax(dim=1)
        
        # 将预测的词索引转换为词元
        pred_token = out_vocab.itos[int(pred.item())]
        
        # 如果预测的词元是终止符EOS,则停止解码
        if pred_token == EOS:
            break
        else:
            output_tokens.append(pred_token)  # 将预测的词元添加到输出列表中
            dec_input = pred  # 更新解码器的输入为当前预测的词的索引,作为下一时间步的输入
    
    return output_tokens  # 返回翻译后的输出词元列表

简单测试一下模型。输入法语句子“ils regardent.”,翻译后的英语句子应该是“they are watching.”。

input_seq = 'ils regardent .'
translate(encoder, decoder, input_seq, max_seq_len)

['they', 'are', 'watching', '.']

6. 评价翻译结果

       评价机器翻译结果通常使用BLEU(Bilingual Evaluation Understudy)[1]。对于模型预测序列中任意的子序列,BLEU考察这个子序列是否出现在标签序列中。

       具体来说,设词数为𝑛𝑛的子序列的精度为𝑝𝑛𝑝𝑛。它是预测序列与标签序列匹配词数为𝑛𝑛的子序列的数量与预测序列中词数为𝑛𝑛的子序列的数量之比。举个例子,假设标签序列为𝐴、𝐵、𝐶、𝐷、𝐸、𝐹,预测序列为𝐴、𝐵、𝐵、𝐶、𝐷,那么𝑝1=4/5, 𝑝2=3/4, 𝑝3=1/3, 𝑝4=0,设len^{_{label}}len^{_{pred}}分别为标签序列和预测序列的词数,那么,BLEU的定义为

                                exp\left ( min\left ( 0,1-\frac{len_{label}}{len_{pred}} \right ) \right )\prod_{n=1}^{k}p_{n}^{1/2^{n}}

       其中𝑘是我们希望匹配的子序列的最大词数。可以看到当预测序列和标签序列完全一致时,BLEU为1。

因为匹配较长子序列比匹配较短子序列更难,BLEU对匹配较长子序列的精度赋予了更大权重。例如,当p_{n}固定在0.5时,随着𝑛的增大,0.5^1/2≈0.7, 0.5^1/4≈0.84, 0.5^1/8≈0.92, 0.5^1/16≈0.96。另外,模型预测较短序列往往会得到较高p_{n}值。因此,上式中连乘项前面的系数是为了惩罚较短的输出而设的。举个例子,当𝑘=2时,假设标签序列为𝐴、𝐵、𝐶、𝐷、𝐸、𝐹,而预测序列为𝐴、𝐵。虽然𝑝1=𝑝2=1,但惩罚系数exp(1−6/2)≈0.14,因此BLEU也接近0.14。

下面来实现BLEU的计算。

import math
import collections

def bleu(pred_tokens, label_tokens, k):
    len_pred, len_label = len(pred_tokens), len(label_tokens)
    
    # 计算BLEU的基础分数,考虑预测序列和标签序列的长度比例
    score = math.exp(min(0, 1 - len_label / len_pred))
    
    # 计算n-gram的匹配数
    for n in range(1, k + 1):
        num_matches, label_subs = 0, collections.defaultdict(int)
        
        # 统计标签序列中每个n-gram的出现次数
        for i in range(len_label - n + 1):
            label_subs[''.join(label_tokens[i: i + n])] += 1
        
        # 计算预测序列中与标签序列中n-gram的匹配数
        for i in range(len_pred - n + 1):
            ngram_pred = ''.join(pred_tokens[i: i + n])
            if label_subs[ngram_pred] > 0:
                num_matches += 1
                label_subs[ngram_pred] -= 1
        
        # 计算BLEU的n-gram权重
        score *= math.pow(num_matches / (len_pred - n + 1), math.pow(0.5, n))
    
    return score

接下来,定义一个辅助打印函数。

def score(input_seq, label_seq, k):
    pred_tokens = translate(encoder, decoder, input_seq, max_seq_len)
    label_tokens = label_seq.split(' ')
    print('bleu %.3f, predict: %s' % (bleu(pred_tokens, label_tokens, k),
                                      ' '.join(pred_tokens)))

预测正确则分数为1。

score('ils regardent .', 'they are watching .', k=2)
bleu 1.000, predict: they are watching .
score('ils sont canadienne .', 'they are canadian .', k=2)
bleu 0.658, predict: they are russian .

四、小结

  • 可以将编码器—解码器和注意力机制应用于机器翻译中。
  • BLEU可以用来评价翻译结果。
参考文献

[1] Papineni, K., Roukos, S., Ward, T., & Zhu, W. J. (2002, July). BLEU: a method for automatic evaluation of machine translation. In Proceedings of the 40th annual meeting on association for computational linguistics (pp. 311-318). Association for Computational Linguistics.

[2] WMT. Translation Task - ACL 2014 Ninth Workshop on Statistical Machine Translation

[3] Tatoeba Project. Tab-delimited Bilingual Sentence Pairs from the Tatoeba Project (Good for Anki and Similar Flashcard Applications)

 

  • 24
    点赞
  • 27
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值