机器学习--贝叶斯算法(1)

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

那么,条件概率p(xi|y=y)怎么得到呢?其实是从样本中统计得到。
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
注意下面这个图中下面的p(yes|no)和上面右边的那个概率写反了,换一下;
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
下图中p(Y=Yes)小错误
在这里插入图片描述
因为分母是一样的,所以只需要比较分子;
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
求条件概率和先验概率可以采用不同的模型,下面介绍两种:
1、多项式模型(以单词为单位)
在这里插入图片描述

在这里插入图片描述

在这里插入图片描述
2、伯努利模型(以文件为单位)
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

视频截图来自于幂次学院的课程,哔哩哔哩AI研习图书馆,视频链接

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值