点云
文章平均质量分 61
cocapop
这个作者很懒,什么都没留下…
展开
-
PointNet+超像素的 <步骤、优点、怎么使用>
首先,需要准备点云数据集和对应的标签数据集。这样,PointNet网络可以结合超像素分割算法来对点云进行分割任务,既能充分利用超像素算法对点云进行预处理,又能通过PointNet网络提取更加丰富的局部和全局特征,从而得到更准确的分割结果。更高的分割精度:通过结合超像素分割算法和PointNet网络,可以充分利用点云的几何信息和局部/全局特征,从而获得更加准确的点云分割结果。综上所述,PointNet网络和超像素分割算法的结合可以充分利用点云的几何信息和局部/全局特征,从而提高点云分割任务的精度和效率。原创 2023-04-08 16:16:32 · 107 阅读 · 0 评论 -
点云特征介绍
点云的法向量是指在点云数据中的每个点处,与该点相关联的法向方向。曲率在点云处理中具有广泛的应用,例如点云分割、特征提取、目标检测、物体识别等任务中,可以用于识别点云中的关键特征点,并为后续处理提供有用的信息。这些数字的具体含义和顺序可能因点云数据的来源和格式而异,因此在使用点云数据时,需要根据具体情况解析和处理这些数字,以正确理解点云数据的含义。法向量:点云数据中的法向量通常表示点的法向信息,用于表示点云表面的朝向或法线方向。三维坐标:点云数据中的点通常由三维坐标表示,分别表示点在X、Y、Z轴上的位置。原创 2023-04-12 11:51:21 · 1665 阅读 · 0 评论 -
针对点云数据,如何定义实例的几何中心不在自身上的物体
如果某个点的法向量指向了点云外部,而且该点的邻居点的法向量都指向了点云内部,则可以认为该点不是自身上的物体的几何中心。使用点云的表面法向估计方法:点云表面法向估计方法,例如基于最近邻搜索的法向估计、基于曲率计算的法向估计等,可以在点云数据中估计每个点的法向量。使用基于点云聚类的方法:可以使用基于点云聚类的算法,例如DBSCAN、MeanShift等,将点云数据中的点进行聚类,从而识别出处于自身上的物体,并将其排除在几何中心的定义之外。原创 2023-04-12 11:49:36 · 148 阅读 · 0 评论 -
<哪些特征>用来衡量点云间的距离和相似性
点云数据是由一系列点构成的,每个点在三维空间中都有其自身的坐标和可能的其他特征属性。法向量:点云中的每个点都可以计算其法向量,即垂直于其所在平面的向量。可以通过计算两个点之间的法向量差异来衡量它们之间的相似性。颜色:点云中的每个点都可以有其自身的颜色属性,例如RGB颜色。以上是一些常用的点云特征,它们可以被用于点云之间的距离度量和相似性计算。欧几里得距离:点云中最基本的距离度量方法,即计算两个点之间的直线距离。间隔距离:计算两个点之间沿着它们之间的最短路径需要穿过的其他点的数量。原创 2023-04-09 13:42:21 · 1523 阅读 · 0 评论 -
(6)局部特征描述子----PFH & FPFH
知乎【点云局部特征描述子】PFH & FPFH原创 2022-12-09 15:18:10 · 144 阅读 · 0 评论 -
(点、6)精配准Iterative Closest Point(ICP)
ICP算法原创 2022-12-09 15:11:34 · 622 阅读 · 0 评论 -
(点、6)点对特征法(Point Pair Feature)
我们对所有返回的位姿做聚类,每个 clutter 中位姿的位置、姿态的差异不超过设定的阈值,然后每个聚类的得分是其包含的所有位姿的总得分,找出得分最高的 clutter,则最终的位姿为得分最高的 clutter 里面包含位姿的平均值。每个参考点可能返回多个位姿(投票相同),返回的位姿(retrieved poses)是否逼近 ground truth,取决于 model 和 scene 点的采样率和旋转角的采样。,scene 是我们测得的真实场景(点云),model 是物体的真实模型(点云)。原创 2022-12-09 14:57:59 · 698 阅读 · 0 评论 -
点云分割方法综述
以上将分割方法分为五类。但是,一般来说,有两种基本方法。-第一种方法是用纯数学模型和几何推理技术,如:区域增长或模型拟合,将线性和非线性模型拟合到点云数据。这种方法允许快速运行时间能实现良好的结果。这种方法的局限性在于在拟合物体时难以选择模型的大小,对噪声敏感并且在复杂场景中不能很好地工作。-第二种方法是用特征描述子的方法。从点云数据中提取3D特征,并使用机器学习技术来学习不同类别的对象类型,然后使用结果模型对所获取的数据进行分类。在复杂场景中,机器学习技术将优于纯粹基于几何推理的技术。原创 2022-11-11 12:11:16 · 3678 阅读 · 0 评论 -
(点)点云----概念、如何处理、滤波、配准
点云配准:点云配准是其中的关键技术之一,它的实质就是将不同坐标参考系下的点云数据通过旋转、平移等刚体变换转移到同一坐标参考系下,实现点云数据之间的互补,得到几何拓扑信息更加完整的点云数据。三维点云处理技术包含许多方面,如点云滤波",点云特征提取,点云配准,点云分割,表面重建等。实质上就是将源点云Q通过变换矩阵匹配到目标点云Р的参考系下的,即P=R*Q+t ,其中R为旋转变换矩阵,t为一个三维的平移向量。基于局部特征描述的算法是通过局部特征来寻找相邻点云的对应点,继而计算出对应的变换矩阵;原创 2022-11-29 18:27:53 · 357 阅读 · 0 评论 -
RANSAC剔除支撑平面
点云算法原创 2022-12-06 17:59:27 · 260 阅读 · 0 评论