ModelNet40数据集

文章介绍了在运行PointNet时使用的ModelNet40数据集,该数据集包含CAD模型的OFF、PLY和HDF5格式。OFF文件是ASCII格式,PLY是多边形文件格式,HDF5则用于存储大数组。文章还提到了数据集的结构,包括训练和测试部分,以及不同格式的用途和特点。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

https://shapenet.cs.stanford.edu/media/modelnet40_ply_hdf5_2048.zip

跑PointNet,modelnet40数据集时;

  • 有些人直接用.off文件;——【CAD模型】

普林斯顿形状Banchmark中的.off文件遵循以下标准:

  • OFF文件全是以OFF关键字开始的ASCII文件。
  • 下一行说明顶点的数量、面片的数量、边的数量。
  • 边的数量可以安全地省略。对模型不会有影响(可以为0)。

  • 顶点按每行一个列出x、y、z坐标。
  • 在顶点列表后,面片按照每行一个列表。对于每个面片,顶点的数量是指定的,接下来是顶点的索引列表。
  • 具体可参考off文件的格式、写入和显示_Alan Lan的博客-CSDN博客
  • 有些人用的是.ply;
  • PLY - 多边形文件格式也被称为斯坦福三角格式,是用于存储被描述为多边形集合的图形对象的格式。
  • 格式组成:
  1. 头:声明数据格式,规定和点和面片的数据内容
  2. 点:点的数据内容(坐标x,y,z 颜色r,g,b等)
  3. 线:线的数据内容(组成线的点序号索引,颜色等)
  4. 面片:面片的数据内容(组成面的点序号索引,颜色等)
  • 有些人用的是.hdf5;
  • 是一种存储相同类型数值的大数组的机制,适用于可被层次性组织且数据集需要被元数据标记的数据模型。
  • hdf5 files: 能够存储两类数据对象 dataset 和 group 的容器,其操作类似 python 标准的文件操作;File 实例对象本身就是一个组,以 / 为名,是遍历文件的入口
  • 一个HDF5文件就是一个由两种基本数据对象(groups and datasets)存放多种科学数据的容器:

    HDF5 dataset: 数据元素的一个多维数组以及支持元数据(metadata),可类比为Numpy 数组,每个数据集都有一个名字(name)、形状(shape) 和类型(dtype),支持切片操作;

    HDF5 group: 包含0个或多个HDF5对象以及支持元数据(metadata)的一个群组结构,可以类比为字典,它是一种像文件夹一样的容器;group 中可以存放 dataset 或者其他的 group,键就是组成员的名称,值就是组成员对象本身(组或者数据集);

  • 总之,dataset是类似于数组的数据集,而group是类似文件夹一样的容器,存放dataset和其他group;group和dataset在h5py中的使用有点类似于词典和Numpy中数组的用法。

  • 具体参考:HDF5 简介_man_world的博客-CSDN博客

modelnet40_ply_hdf5_2048是基于原来的采样了一下,只有点的坐标,还有一个版本是带法向量的。modelnet40_normal_resample是基于原来的modelnet40进行归一化和重采样,这样子数据所占内存和运算量就减少了(pointnet++里面讲到其对下采样具有鲁棒性,这样子可以提升速度,同时acc也不会有明显的下降;modelnet40_ply_hdf5就是h5(hdf5)格式,是采了2048个点,保存的点的坐标和法向量;modelnet是包含3部分:modelnet10,modelnet40和aligned 40的数据。

ModelNet40数据集来源于http://modelnet.cs.princeton.edu/

这个ZIP文件包含来自40个类别的CAD模型,用于在我们的3D深度学习项目中训练深度网络。训练和测试部分也包含在文件中。这些CAD模型完全是由我们自己在内部清理的。

每一个都含有test和train文件。可以看到里面的文件都是.off文件

参考:ModelNet40格式的理解(PointNet实现第2步)_xiaobai_Ry的博客-CSDN博客

### 回答1: ModelNet40是一个常用的计算机视觉数据集,它包含40个不同的物体类别,例如椅子、桌子、汽车、船等。该数据集的目标是为了训练模型进行物体分类、物体检测和物体识别等任务。 ModelNet40数据集由各种3D实体的CAD模型构成,每个类别中有大约100到200个模型。每个模型都包含了与之对应的点云数据和CAD模型的表面法线。点云数据表示了物体的三维形状信息,而表面法线则表示了物体表面的方向信息。 ModelNet40数据集中的每个模型都被标记了一个对应的类别标签,以用于训练和评估模型的准确性。此外,数据集还提供了每个模型的多个方向的旋转变换,以增加数据的多样性。这有助于模型在不同角度和方向上学习物体的特征。 借助ModelNet40数据集,可以进行多种计算机视觉任务的研究,例如三维物体识别、三维物体检测和三维物体分割。研究人员可以使用该数据集来训练和评估各种深度学习模型,以提高这些任务的准确性和效果。 总之,ModelNet40是一个用于计算机视觉任务的标准数据集,其中包含了40个不同物体类别的CAD模型和对应的点云数据。通过使用该数据集,研究人员可以进行各种三维物体识别和检测的研究,从而推动该领域的进展和发展。 ### 回答2: ModelNet40是一个用于3D物体识别和分类的数据集。它包含40个不同的类别,例如桌子、椅子、飞机等。每个类别中有约200个模型,总共约8000个模型。这些模型经过了三维扫描,转换成了点云数据。 ModelNet40的点云数据以ASCII格式存储在txt文件中。每个txt文件对应一个3D模型,其中每一行表示一个点的坐标。这些坐标表示了物体的形状和结构,可以用于进行三维物体的识别和分类。 这个数据集作为一个通用的基准数据集,广泛应用于深度学习和计算机视觉领域的研究和实验。研究人员可以利用这个数据集来训练和评估各种三维物体识别和分类算法的性能。 通过对ModelNet40进行训练,可以帮助计算机系统更好地理解和识别三维物体。这对于许多应用领域都是非常有价值的,例如机器人导航、虚拟现实、增强现实等。此外,该数据集也可以用于学术研究,探索如何更好地将计算机视觉技术应用于三维世界。 总而言之,ModelNet40是一个用于三维物体识别和分类的数据集,提供了大量的点云数据,可以用于训练和评估各种算法的性能,对于进一步提升计算机视觉技术在三维领域的应用具有重要意义。 ### 回答3: ModelNet40 txt是指ModelNet40数据集的文本文件格式。ModelNet40是一个广泛用于三维物体识别和分类研究的常用数据集。它包含40个物体类别,每个类别约有900至1500个三维模型。 ModelNet40 txt文件包含了每个三维模型的信息。文件中的每一行对应一个模型,包含模型的文件名和模型所属的物体类别。模型文件名通常由一个十六进制编码和一个文件后缀组成,比如"03001627_1.off"表示类别为"03001627"(即椅子)的一个模型文件。文件后缀表示了模型文件的格式,如".off"表示模型使用Object File Format存储。 ModelNet40 txt文件的主要作用是提供了一个方便的方式来获取ModelNet40数据集的模型信息,以便进行模型的加载和处理。在研究和开发过程中,我们可以使用这些信息来生成模型的输入数据,并进行物体识别、分类、分割等任务的训练和评估。 总之,ModelNet40 txt提供了ModelNet40数据集中每个三维模型的文件名和类别信息的文本文件,方便研究人员使用该数据集进行三维物体识别和分类的研究。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值