文生音乐开源项目DiffRhythm,8G显存本地部署之Windows篇

本文已首发于 秋码记录
微信公众号:你我杂志刊
在这里插入图片描述

如果你也想搭建一个与秋码记录一样的网站,可以浏览我的这篇 国内 gitee.com Pages 下线了,致使众多站长纷纷改用 github、gitlab Pages 托管平台

秋码记录网站使用的主题是开源的,目前只在github.com开源。
hugo-theme-kiwi开源地址:https://github.com/zhenqicai/hugo-theme-kiwi

一、DiffRhythm:颠覆音乐创作的AI黑科技

DiffRhythm是由西北工业大学音频语音与语言处理实验室(ASLP@NPU)与香港中文大学(深圳)联合开发的开源音乐生成模型,其采用全扩散架构,能够在10秒内生成4分45秒的高质量双轨立体声音乐(包含人声与伴奏) 。该模型以非自回归结构实现极速推理,支持纯文字风格描述生成音乐(如"Jazzy Nightclub Vibe"或"Arctic research station, theremin auroras"等创意场景) ,且最低仅需8GB显存即可本地部署。

技术亮点

  1. 端到端生成:无需多阶段拼接,直接输出完整歌曲;
  2. 句级歌词对齐:通过音素映射实现人声与歌词精准同步;
  3. 压缩鲁棒VAE:支持从MP3等压缩格式还原无损音质;
  4. 多模态输入:兼容文本提示、参考音频、歌词等多类型输入。

本地部署

我电脑依旧是使用python 3.10.9,而仍然使用python3自带的venv模块来搭建python 虚拟环境

当然咯,你也非得要跟我一样,你也可以使用python 3.11.Xpython 3.12.x,用anacondaminiconda来构建python 虚拟环境,这一点,并没有什么特定要求。

创建python 虚拟环境

你可以在电脑任一磁盘较为宽裕,来构建一个python 虚拟环境

在这里插入图片描述

下载DiffRhythm推理代码

你得确保你的电脑安装好了git,否则的话,将无法通过以下命令进行clone DiffRhythm推理代码。

至于这么安装git工具,就不在这里进行赘述了,毕竟我前几篇文章是有讲解过的。

git clone https://github.com/ASLP-lab/DiffRhythm.git
cd DiffRhythm

在这里插入图片描述

安装espeak-ng

DiffRhythm生成的音乐包含人声演唱的歌词,这需要将文本歌词转化为音素序列(如国际音标IPA),并精确映射到音频的时间轴上。eSpeak-NG作为开源音素合成引擎,在此环节发挥关键作用:

  1. 音素解析:将用户输入的歌词(如中文、英文)转换为标准音素表示,例如中文你好/ni haʊ/,确保模型理解发音规则。
  2. 发音规则库支持eSpeak-NG内置100+语言的音素规则库,能够处理多语言歌词混合场景(如中英双语歌曲),避免发音错误。
  3. 对齐算法依赖:DiffRhythm通过句子级对齐机制,将音素序列映射到潜在表示的特定位置,确保生成的歌声与歌词在时间轴上严格同步。eSpeak-NG提供底层音素时间戳数据支撑这一过程。

我们直接下载espeak-NG官方编译好的安装包,https://github.com/espeak-ng/espeak-ng/releases

在这里插入图片描述

双击刚刚下载的espeak-ng.msi,一路Next下去就好了。

在这里插入图片描述

在这里插入图片描述

还需将espeak-ng安装路径添加到PATH环境变量中。

在这里插入图片描述

安装项目所需的依赖

这一步是必不可少的,毕竟现代的项目都是集成项目,换句话说,一个大项目或多或少需要去集成优秀的框架工具库等。

pip install -r requirements.txt

在国内,我们还是先设置一个国内镜像源,以便下载依赖库能够加快些,毕竟,pypi.org在国内访问起来真是一言难尽啊,就更别说再去pypi.org下载什么依赖库了。

在这里插入图片描述

下载模型

我们可以通过HuggingFace.co的国内镜像站hf-mirror.com进行下载模型。

DiffRhythm-base模型地址:https://hf-mirror.com/ASLP-lab/DiffRhythm-base/tree/main

在这里插入图片描述

我们仍然是通过git工具来下载模型,所以,你的电脑得提前安装好git,是很有必要的。

git clone https://hf-mirror.com/ASLP-lab/DiffRhythm-base ASLP-lab/DiffRhythm-base

在这里插入图片描述

在这里插入图片描述

运行python infer/infer.py

当模型下载完成了之后,这时,我们便可以通过以下命令,来生成音乐了。

python infer/infer.py  --lrc-path infer/example/eg_cn.lrc  --ref-audio-path infer/example/eg_cn.wav  --audio-length 95  --repo_id ASLP-lab/DiffRhythm-base  --output-dir infer/example/output  --chunked

倘若,你运行了上述命令后,也出现了与下图一样的错误。

在这里插入图片描述
中途还会出现其他的错误,解决方案请移步秋码记录与本文同标题的文章

我们可以通过pip torch show来查看当前安装的torch版本信息,从下图,我们可以看出,requirements.txt文件中的torchcpu版本,所以,我们先卸载它,而后安装CUDA版本的torch

在这里插入图片描述

pip uninstall torch torchaudio torchvision

在这里插入图片描述

等把CPU版的torch卸载完成后,我们执行以下命令来安装CUDA版本的torch

pip install torch==2.6.0 torchvision==0.21.0 torchaudio==2.6.0 --index-url https://download.pytorch.org/whl/cu124

在这里插入图片描述

之后,我们再次查看torch版本信息时,这回,就是项目所需的了。

在这里插入图片描述

CUDA版本的torch也安装好了,这回总该可以运行成功了吧。

然而,事情总是与你想的不是那么一回事。要是,能按我们的想法进行下去,就不会有事与愿违这个成语了,人生也就不会有那么多的不如意了

从报错的信息来看,说我们的系统没有安装espeak,我们明明却安装了,可项目为什么会找不到呢?

还是按图索骥的在抛出错误的这些文件修改。

中途还会出现其他的错误,解决方案请移步秋码记录与本文同标题的文章

保存修改好的文件后,我们再次运行,其实,经过几次的挫败,我们已然对这次还会抛出什么幺蛾子的问题,已不再是那么惊愕了,而是有了一种如果在报错的话,那就明天再弄吧,先看会儿电视剧,别整这个破玩意儿,这个人都郁闷了,那就不好了。

可是,这回却出乎你的意料,而又在情理之中,却运行成功了。

在这里插入图片描述

那么,我们使用DeepSeek`为我们编写一首歌词。

在这里插入图片描述

再次运行它。

在这里插入图片描述

Ollama是一个致力于简化大型语言模型(LLM)和生成式AI应用开发、部署流程的平台。对于想要在本地环境中部署文本生成图像(文生图)模型的需求,通常涉及到以下几个步骤: ### 环境准备 首先需要准备好适合运行深度学习任务的工作环境。这包括但不限于安装必要的依赖库如Python及其相关的包管理工具pip;配置好GPU驱动程序以便加速计算过程(如果硬件支持的话)。另外还需要考虑是否有足够的磁盘空间存储预训练好的大尺寸模型文件以及充足的内存资源。 ### 模型选择与获取 确定你要使用的具体文生图算法或框架,例如DALL-E Mini等流行方案,并从官方渠道下载对应的权重文件或者直接利用已有的API服务端点。部分开源项目可以直接克隆其仓库到本地服务器上进行下一步操作前的所有准备工作。 ### 配置启动 按照所选项目的文档说明完成环境变量设定、参数调整等工作,确保所有组件都能正常通信工作。比如设置数据库连接字符串让应用程序能够读取用户输入并保存结果;指定静态资源路径方便前端页面加载显示生成的内容等等。 ### 测试验证 最后一步就是全面地测试整个系统是否按预期运作了——通过编写简单的脚本向接口发送请求查看返回值是否正确无误;检查日志输出寻找潜在错误提示信息进一步优化性能表现直到满意为止。 请注意实际操作过程中还需结合自身业务场景做出适当修改定制化处理,以上只是一个通用指导建议仅供参考。 --
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

甄齐才

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值