ubuntu20.04 cuda opencv

创建一个编译目录,并进入。

cuda的安装建议从官网上直接下载run文件,一次性完成cuda nvcc等的安装。

CUDA Toolkit 11.7 Downloads | NVIDIA Developer

 

wget https://developer.download.nvidia.com/compute/cuda/11.7.0/local_installers/cuda_11.7.0_515.43.04_linux.runsudo
sh cuda_11.7.0_515.43.04_linux.run

默认全选安装,建议不要修改。

安装完cuda toolkit之后安装一些必要的软件包,此处如果安装失败,可以多试几次或者换一下源。

# Install prerequisites 
sudo apt-get update && apt-get upgrade -y &&\
    apt-get install -y \
        build-essential \
        unzip \
        yasm \
        pkg-config \
        libswscale-dev \
        libtbb2 \
        libtbb-dev \
        libjpeg-dev \
        libpng-dev \
        libtiff-dev \
        libavformat-dev \
        libpq-dev \
        libxine2-dev \
        libglew-dev \
        libtiff5-dev \
        zlib1g-dev \
        libjpeg-dev \
        libavcodec-dev \
        libavformat-dev \
        libavutil-dev \
        libpostproc-dev \
        libswscale-dev \
        libeigen3-dev \
        libtbb-dev \
        libgtk2.0-dev \

下载opencv以及opencv-contrib

# Download and unpack sources
wget https://github.com/opencv/opencv/archive/refs/tags/4.5.2.zip -O opencv.zip
wget https://github.com/opencv/opencv_contrib/archive/refs/tags/4.5.2.zip -O opencv_contrib.zip
unzip opencv.zip
mv opencv-4.5.2 opencv
unzip opencv_contrib.zip
mv opencv_contrib-4.5.2 opencv_contrib

创建一个编译目录,并进入。 

# Create build directory and switch into it
mkdir opencv/build && cd opencv/build

执行cmake,亲测有效

cmake -DCMAKE_BUILD_TYPE=RELEASE -DCMAKE_INSTALL_PREFIX=/usr/local -DOPENCV_EXTRA_MODULES_PATH=../opencv_contrib/modules .. -DWITH_CUDA=1 -DENABLE_FAST_MATH=1 -DCUDA_FAST_MATH=1 -DWITH_CUBLAS=1 -DOPENCV_GENERATE_PKGCONFIG=1 -DCUDA_GENERATION=Pascal ..

执行编译和安装。

make -j8

安装可能耗时较长

make install

### 安装支持 CUDAOpenCV 要在 Ubuntu 20.04 上安装支持 CUDAOpenCV,可以按照以下方法操作。以下是详细的说明: #### 系统准备 确保系统的软件包是最新的,运行以下命令更新系统: ```bash sudo apt-get update && sudo apt-get upgrade -y ``` #### 安装依赖项 为了成功构建 OpenCV 和其模块,需要先安装一些必要的开发工具和库文件。这些可以通过 `apt` 命令完成: ```bash sudo apt-get install -y build-essential cmake git pkg-config \ libjpeg-dev libpng-dev libtiff-dev libopenexr-dev \ libgtk2.0-dev libavcodec-dev libavformat-dev libswscale-dev \ libv4l-dev libxvidcore-dev libx264-dev libqtgui4 libqtwebkit4 \ libqt4-test python3-pip python3-numpy qtbase5-dev \ libatlas-base-dev gfortran wget unzip yasm nvidia-cuda-toolkit ``` 上述命令涵盖了大部分所需的依赖项[^5]。 #### 下载并解压 OpenCV 源码 访问官方 GitHub 页面下载最新版本的 OpenCVopencv_contrib 库: ```bash wget https://github.com/opencv/opencv/archive/refs/tags/4.5.5.zip -O opencv-4.5.5.zip unzip opencv-4.5.5.zip mv opencv-4.5.5 opencv wget https://github.com/opencv/opencv_contrib/archive/refs/tags/4.5.5.zip -O opencv_contrib-4.5.5.zip unzip opencv_contrib-4.5.5.zip mv opencv_contrib-4.5.5 opencv_contrib ``` #### 配置 CMake 构建选项 进入 OpenCV 文件夹创建一个新的目录用于存储编译后的文件,并执行 CMake 进行配置: ```bash cd opencv mkdir build && cd build cmake -D CMAKE_BUILD_TYPE=RELEASE \ -D CMAKE_INSTALL_PREFIX=/usr/local \ -D OPENCV_EXTRA_MODULES_PATH=../../opencv_contrib/modules \ -D ENABLE_CXX11=ON \ -D WITH_CUDA=ON \ -D CUDA_ARCH_BIN="8.9" \ -D BUILD_EXAMPLES=OFF .. ``` 注意:参数 `-D CUDA_ARCH_BIN="8.9"` 是针对 NVIDIA GeForce RTX 4090 显卡设置的架构编号[^4]。如果使用其他型号显卡,请查阅对应的 CUDA 支持文档调整该数值。 #### 编译与安装 启动多线程编译过程加快速度,完成后将其复制至全局环境变量下: ```bash make -j$(nproc) sudo make install sudo ldconfig ``` #### 测试安装成果 编写一段简单的 Python 脚本来验证是否能够正常调用 GPU 加速功能: ```python import cv2 as cv print(cv.__version__) if cv.cuda.getCudaEnabledDeviceCount() > 0: print("CUDA support is enabled.") else: print("No CUDA device detected or not supported by this version of OpenCV.") ``` ### 注意事项 对于某些特定情况可能还需要额外处理,比如解决 FreeImage 相关错误可通过如下方式修复: ```bash sudo apt-get install libfreeimage3 libfreeimage-dev sudo make clean && make ./mnistCUDNN ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值