在 Ubuntu 20.04 中使用 CUDA 安装 OpenCV 4

本文详细介绍了如何在 Ubuntu 20.04 上从源代码编译并安装带有 CUDA 和 cuDNN 支持的 OpenCV 4,包括安装先决条件、确定 CUDA 架构版本、配置 CMake、编译以及安装步骤。遵循此指南,用户将能够充分利用 GPU 加速功能。
摘要由CSDN通过智能技术生成

eda4f7abd043733c02b8614bee7e01bc.png

OpenCV 编译过程的截图。

安装一个预编译版本的OpenCV可能会导致你不能充分利用cuda硬件,而cuda硬件在GPU加速方面是非常强大的。。

本文,我们将使用带有 CUDA 和 cuDNN 的预安装环境从源代码构建 OpenCV。

1. 先决条件

1.1 CUDA 和 cuDNN

主要的先决条件是安装 NVIDIA CUDA 工具包和 NVIDIA CUDA 深度神经网络库 (cuDNN) 库。

如果你还没有安装这些,建议你按照我之前的指南安装它们:

https://medium.com/@juancrrn/installing-cuda-and-cudnn-in-ubuntu-20-04-for-deep-learning-dad8841714d6

设置好后,让我们继续依赖关系。

1.2 依赖项

需要 CMake 和 GCC 来配置安装和编译项目:

$ sudo apt install cmake

$ sudo apt install gcc g++

为了支持 Python 3 安装,我们需要 Python(大多数 Ubuntu 版本都预装了它)、Python-devel 和 Numpy:

$ sudo apt install python3 python3-dev python3-numpy

GUI 功能、相机支持 (v4l)、媒体支持 (ffmpeg、gstreamer...) 等都需要 GTK:

$ sudo apt install libavcodec-dev libavformat-dev libswscale-dev

$ sudo apt install libgstreamer-plugins-base1.0-dev libgstreamer1.0-dev

$ sudo apt install libgtk-3-dev

下一个依赖项是可选的,但添加了对 PNG、JPEG、JPEG2000、TIFF、WebP 等格式的最新支持:

$ sudo apt install libpng-dev libjpeg-dev libopenexr-dev libtiff-dev libwebp-dev

现在,使用 Git 下载 OpenCV 存储库:

$ git clone https://github.com/opencv/opencv.git

我们还将下载 OpenCV 的额外模块 (CMake flag -D OPENCV_EXTRA_MODULES_PATH) 存储库。需要这些模块才能将 CUDA 功能与 OpenCV 一起使用。

$ git clone ht
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值