OpenCV 编译过程的截图。
安装一个预编译版本的OpenCV可能会导致你不能充分利用cuda硬件,而cuda硬件在GPU加速方面是非常强大的。。
本文,我们将使用带有 CUDA 和 cuDNN 的预安装环境从源代码构建 OpenCV。
1. 先决条件
1.1 CUDA 和 cuDNN
主要的先决条件是安装 NVIDIA CUDA 工具包和 NVIDIA CUDA 深度神经网络库 (cuDNN) 库。
如果你还没有安装这些,建议你按照我之前的指南安装它们:
https://medium.com/@juancrrn/installing-cuda-and-cudnn-in-ubuntu-20-04-for-deep-learning-dad8841714d6
设置好后,让我们继续依赖关系。
1.2 依赖项
需要 CMake 和 GCC 来配置安装和编译项目:
$ sudo apt install cmake
$ sudo apt install gcc g++
为了支持 Python 3 安装,我们需要 Python(大多数 Ubuntu 版本都预装了它)、Python-devel 和 Numpy:
$ sudo apt install python3 python3-dev python3-numpy
GUI 功能、相机支持 (v4l)、媒体支持 (ffmpeg、gstreamer...) 等都需要 GTK:
$ sudo apt install libavcodec-dev libavformat-dev libswscale-dev
$ sudo apt install libgstreamer-plugins-base1.0-dev libgstreamer1.0-dev
$ sudo apt install libgtk-3-dev
下一个依赖项是可选的,但添加了对 PNG、JPEG、JPEG2000、TIFF、WebP 等格式的最新支持:
$ sudo apt install libpng-dev libjpeg-dev libopenexr-dev libtiff-dev libwebp-dev
现在,使用 Git 下载 OpenCV 存储库:
$ git clone https://github.com/opencv/opencv.git
我们还将下载 OpenCV 的额外模块 (CMake flag -D OPENCV_EXTRA_MODULES_PATH
) 存储库。需要这些模块才能将 CUDA 功能与 OpenCV 一起使用。
$ git clone ht