PDE学习笔记
- 基本概念
- CH.1 方程导出和定解条件
- CH2. 波动方程
基本概念
向量点积和向量内积相同吗?
向量内积和向量点积是同一个概念,常用于描述两个向量之间的乘积运算。通常表示为两个向量相应位置上元素的乘积之和,比如对于二维向量 a = [ a 1 , a 2 ] \mathbf{a} = [a_1, a_2] a=[a1,a2] 和 b = [ b 1 , b 2 ] \mathbf{b} = [b_1, b_2] b=[b1,b2],它们的内积(或点积)为 a ⋅ b = a 1 ⋅ b 1 + a 2 ⋅ b 2 \mathbf{a} \cdot \mathbf{b} = a_1 \cdot b_1 + a_2 \cdot b_2 a⋅b=a1⋅b1+a2⋅b2。
PDE的阶数
PDE的阶数就是最高阶偏导数的阶数。
PDEs的分类 (根据方程性质)
偏微分方程(Partial Differential Equations,PDEs)是一类涉及多个变量及其偏导数的方程。在物理、工程和数学等领域有广泛的应用。根据方程的性质,PDEs通常被分为三类:椭圆型方程、抛物型方程和双曲型方程。下面将对这三类方程进行详细解释:
-
椭圆型方程(Elliptic Equations):
- 特点:在每一点上,二阶导数项的系数矩阵是正定的。
- 典型例子:拉普拉斯方程(Laplace’s Equation) ∇ 2 u = 0 \nabla^2 u = 0 ∇2u=0 和泊松方程(Poisson’s Equation) ∇ 2 u = f \nabla^2 u = f ∇2u=f。
- 物理意义:描述静态平衡状态,如静电场、稳定温度分布等。
- 解的性质:解通常是平滑的,且在边界条件下是唯一的。
-
抛物型方程(Parabolic Equations):
- 特点:在每一点上,二阶导数项的系数矩阵是半正定的。
- 典型例子:热传导方程(Heat Equation) ∂ u ∂ t = ∇ 2 u \frac{\partial u}{\partial t} = \nabla^2 u ∂t∂u=∇2u。
- 物理意义:描述随时间变化的过程,如热量扩散、物质浓度变化等。
- 解的性质:解随时间变化,具有平滑和唯一性的特点。
-
双曲型方程(Hyperbolic Equations):
- 特点:在每一点上,二阶导数项的系数矩阵具有不同符号的特征值。
- 典型例子:波动方程(Wave Equation) ∂ 2 u ∂ t 2 = ∇ 2 u \frac{\partial^2 u}{\partial t^2} = \nabla^2 u ∂t2∂2u=∇2u。
- 物理意义:描述波动现象,如声波、电磁波的传播。
- 解的性质:解具有传播性,可以形成波前和波后的区别。
这三类方程在数学和物理中扮演着重要的角色,它们分别对应不同类型的物理现象和边界条件。理解这些方程的特点和物理意义对于解决实际问题非常重要。
本教程学习的三大类方程
有外力作用的波动方程
有外力作用的波动方程描述了在外力作用下波的传播。一般表达式为:
∂ 2 u ∂ t 2 − c 2 ∇ 2 u = f ( x , t ) \frac{\partial^2 u}{\partial t^2} - c^2 \nabla^2 u = f(x, t) ∂t2∂2u−c2∇2u=f(x,t)
其中, u ( x , t ) u(x, t) u(x,t) 表示波的位移, c c c 是波速, ∇ 2 \nabla^2 ∇2 是拉普拉斯算子, f ( x , t ) f(x, t) f(x,t) 是单位体积上的外力。
热传导方程
热传导方程描述了热量在物体中的传播。一般表达式为:
∂ u ∂ t − α ∇ 2 u = g ( x , t ) \frac{\partial u}{\partial t} - \alpha \nabla^2 u = g(x, t) ∂t∂u−α∇2u=g(x,t)
其中, u ( x , t ) u(x, t) u(x,t) 表示温度, α \alpha α 是热传导系数, ∇ 2 \nabla^2 ∇2 是拉普拉斯算子, g ( x , t ) g(x, t) g(x,t) 是单位体积上的热源。
位势方程、泊松方程、Laplace方程 (调和方程)
位势方程是一个广义的概念,通常指的是描述某种场的势能或势函数的方程。在物理学中,这种方程常用于描述电势、重力势、流体速度势等。位势方程通常是一个偏微分方程,其解可以表示为场的势能或势函数,从而简化了场的分析和计算。
位势方程
位势方程是一个广义的概念,通常指的是描述某种场的势能或势函数的方程。在物理学中,这种方程常用于描述电势、重力势、流体速度势等。位势方程通常是一个偏微分方程,其解可以表示为场的势能或势函数,从而简化了场的分析和计算。
泊松方程
泊松方程是一种特定的位势方程,用于描述带有源项的静态场问题。它的一般形式为:
∇ 2 u = f ( x ) \nabla^2 u = f(x) ∇2u=f(x)
其中, u u u 是待求的势函数, ∇ 2 \nabla^2 ∇2 是拉普拉斯算子, f ( x ) f(x) f(x) 是一个给定的源项,代表了场的源或汇。泊松方程在电磁学、重力学、流体力学和热传导等领域有广泛应用。
拉普拉斯方程
拉普拉斯方程是泊松方程的一个特例,当源项 f ( x ) = 0 f(x) = 0 f(x)=0 时,泊松方程简化为拉普拉斯方程:
∇ 2 u = 0 \nabla^2 u = 0 ∇2u=0
拉普拉斯方程描述了没有外部源或汇的静态场问题,即场是调和的。它在电磁学、流体力学、声学和天体物理学等领域中有重要应用。
总的来说,位势方程是一个广义概念,泊松方程是描述带有源项的位势问题的方程,而拉普拉斯方程是描述没有源项的位势问题的方程。
拉普拉斯方程是一个描述静态(时间不变)场的方程,通常不直接涉及外力项。一般表达式为:
∇ 2 u = 0 \nabla^2 u = 0 ∇2u=0
其中, u ( x ) u(x) u(x) 表示静态场,如电势或温度分布, ∇ 2 \nabla^2 ∇2 是拉普拉斯算子。
如果要考虑外力或源项,可以将拉普拉斯方程扩展为泊松方程:
∇ 2 u = h ( x ) \nabla^2 u = h(x) ∇2u=h(x)
其中, h ( x ) h(x) h(x) 是一个给定的源项,可以表示外力或其他影响因素。
∇ 2 u = h ( x ) \nabla^2 u = h(x) ∇2u=h(x) 和 − ∇ 2 u = f ( x ) -\nabla^2 u=f(x) −∇2u=f(x) 的区别
这两个方程都是泊松方程的形式,用于描述带有源项的静态场问题,如电磁场、重力场或温度分布等。它们的主要区别在于源项的符号:
第一个方程:正源项的泊松方程
∇ 2 u = h ( x ) \nabla^2 u = h(x) ∇2u=h(x)
这个方程中,源项 h ( x ) h(x) h(x) 是正的,表示它是一个生成场的源。在物理学中,这样的源项通常代表了某种正的物理量,如正电荷分布、热源等。
第二个方程:负源项的泊松方程
− ∇ 2 u = f ( x ) -\nabla^2 u = f(x) −∇2u=f(x)
这个方程中,源项 f ( x ) f(x) f(x) 是正的,但前面有一个负号,因此实际上这个方程也表示一个正的源项,只是表达方式不同。在某些物理情境中,这种形式可能更为常见,如在电磁学中,通常使用负号来表示电势方程,因为电场方向是由正电荷指向负电荷。
主要区别
两个方程的主要区别在于源项前的符号,这通常取决于特定物理问题的约定和定义。在实际应用中,这两个方程都可以描述类似的物理现象,只是符号的选择可能会根据特定领域的习惯而有所不同。在解决具体问题时,应根据实际情况选择合适的方程形式。
PDEs分类 (根据结构和特性)
偏微分方程(PDEs)根据其结构和特性可以被分类为线性方程、拟线性方程、半线性方程和完全非线性方程。下面将详细解释这四种类型的区别:
线性方程(Linear Equations)
-
定义:线性偏微分方程是指方程中的未知函数及其偏导数都是线性的。也就是说,方程可以表示为未知函数及其偏导数的线性组合等于某个已知函数。
-
形式:一般形式为
∑ ∣ α ∣ ≤ m a α ( x ) D α u = f ( x ) \sum_{|\alpha|\leq m} a_\alpha(x) D^\alpha u = f(x) ∑∣α∣≤maα(x)Dαu=f(x)
其中, a α ( x ) a_\alpha(x) aα(x)是已知系数函数, D α D^\alpha Dα表示偏导数算子, f ( x ) f(x) f(x)是已知的源项函数。
-
特点:解的叠加原理成立,即方程的解可以通过其特解的线性组合得到。
拟线性方程(Quasilinear Equations)
-
定义:拟线性偏微分方程是指方程中最高阶偏导数项是线性的,而低阶项可能是非线性的。
-
形式:一般形式为
∑ ∣ α ∣ = m a α ( x , u , D u , … , D m − 1 u ) D α u = f ( x , u , D u , … , D m − 1 u ) \sum_{|\alpha|=m} a_\alpha(x, u, Du, \dots, D^{m-1}u) D^\alpha u = f(x, u, Du, \dots, D^{m-1}u) ∑∣α∣=maα(x,u,Du,…,Dm−1u)Dαu=f(x,u,Du,…,Dm−1u)
其中,最高阶偏导数的系数 a α a_\alpha aα和源项 f f f可以依赖于未知函数(u)及其低阶偏导数。
-
特点:最高阶导数项保持线性,但低阶项的非线性使得解的叠加原理不再适用。
半线性方程(Semilinear Equations)
-
定义:半线性偏微分方程是指方程中最高阶偏导数项是线性的,而非线性仅出现在低阶偏导数项或无偏导数项中。
-
形式:一般形式为
∑ ∣ α ∣ = m a α ( x ) D α u = f ( x , u , D u , … , D m − 1 u ) \sum_{|\alpha|=m} a_\alpha(x) D^\alpha u = f(x, u, Du, \dots, D^{m-1}u) ∑∣α∣=maα(x)Dαu=f(x,u,Du,…,Dm−1u)
其中,最高阶偏导数的系数 a α a_\alpha aα是已知函数,而源项 f f f可以依赖于未知函数 u u u及其低阶偏导数。
-
特点:最高阶导数项保持线性,非线性仅限于低阶项。
完全非线性方程(Fully Nonlinear Equations)
-
定义:完全非线性偏微分方程是指方程中未知函数及其偏导数的任何项都可以是非线性的。
-
形式:一般形式为
F ( x , u , D u , … , D m u ) = 0 F(x, u, Du, \dots, D^mu) = 0 F(x,u,Du,…,Dmu)=0
其中, F F F是一个非线性函数,可以依赖于未知函数 u u u及其所有阶数的偏导数。
-
特点:方程中不存在线性项,解的性质和求解方法与线性方程有显著不同。
区别总结
- 线性方程:未知函数及其偏导数都是线性的,解的叠加原理成立。
- 拟线性方程:最高阶偏导数项是线性的,低阶项可能是非线性的。
- 半线性方程:最高阶偏导数项是线性的,非线性仅出现在低阶偏导数项或无偏导数项中。
- 完全非线性方程:未知函数
及其偏导数的任何项都可以是非线性的,解的性质和求解方法与线性方程有显著不同。
PDE中拉普拉斯算子和梯度算子的区别
拉普拉斯算子(Laplacian)和梯度算子(Gradient)是偏微分方程(PDE)中常见的两种算子,它们在数学和物理中有着广泛的应用。下面将详细解释这两种算子的区别,并附带示例进行讲解。
梯度算子(Gradient)
-
定义:梯度算子是一个向量算子,它描述了一个标量场在每一点上最大变化率的方向和大小。对于一个三维空间中的标量函数 f ( x , y , z ) f(x, y, z) f(x,y,z),其梯度定义为:
∇ f = ( ∂ f ∂ x , ∂ f ∂ y , ∂ f ∂ z ) \nabla f = \left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}\right) ∇f=(∂x∂f,∂y∂f,∂z∂f)
-
物理意义:在物理学中,梯度常用于表示场的强度和方向,如电场强度是电势的梯度,温度梯度表示温度变化的方向和速率。
-
示例:考虑一个温度分布函数 T ( x , y , z ) = x 2 + y 2 + z 2 T(x, y, z) = x^2 + y^2 + z^2 T(x,y,z)=x2+y2+z2,其梯度为:
∇ T = ( 2 x , 2 y , 2 z ) \nabla T = \left(2x, 2y, 2z\right) ∇T=(2x,2y,2z)
这表示温度在空间中沿着从原点向外的方向变化最快,且变化率与距离成正比。
拉普拉斯算子(Laplacian)
-
标识符 Laplace算子通常有两种标识符:通常表示为 ∇² 或 Δ,其中∇ 是梯度算子,² 表示算子的二次方。
-
定义:拉普拉斯算子是一个标量算子,它描述了一个函数在某点处的曲率或散度。对于一个三维空间中的标量函数 f ( x , y , z ) f(x, y, z) f(x,y,z),其拉普拉斯算子定义为:
∇ 2 f = ∂ 2 f ∂ x 2 + ∂ 2 f ∂ y 2 + ∂ 2 f ∂ z 2 \nabla^2 f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} + \frac{\partial^2 f}{\partial z^2} ∇2f=∂x2∂2f+∂y2∂2f+∂z2∂2f
-
物理意义:拉普拉斯算子在物理学中常用于描述物理量的分布,如电势、温度等。拉普拉斯方程( ∇ 2 f = 0 \nabla^2 f = 0 ∇2f=0)描述了稳态下的平衡状态。
-
示例:对于上述的温度分布函数 T ( x , y , z ) = x 2 + y 2 + z 2 T(x, y, z) = x^2 + y^2 + z^2 T(x,y,z)=x2+y2+z2,其拉普拉斯算子为:
∇ 2 T = ∂ 2 T ∂ x 2 + ∂ 2 T ∂ y 2 + ∂ 2 T ∂ z 2 = 2 + 2 + 2 = 6 \nabla^2 T = \frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} + \frac{\partial^2 T}{\partial z^2} = 2 + 2 + 2 = 6 ∇2T=∂x2∂2T+∂y2∂2T+∂z2∂2T=2+2+2=6
这表示温度分布在空间中是均匀增加的,且增加率是常数。
区别总结
- 性质:梯度是一个向量算子,表示函数在空间中变化最快的方向和大小;拉普拉斯是一个标量算子,表示函数在某点处的散度或曲率。
- 结果:梯度的结果是一个向量,拉普拉斯的结果是一个标量。
- 应用:梯度常用于描述场的强度和方向,拉普拉斯常用于描述物理量的分布和平衡状态。
梯度算子,散度算子,拉普拉斯算子的关联
对标量函数先进行梯度运算,然后再进行散度运算,就得到了该函数的拉普拉斯算子。具体地说,如果一个标量函数 f ( x ) f(\mathbf{x}) f(x) 可微分且有二阶连续偏导数,其中 x \mathbf{x} x 是一个 n n n 维向量,则它的拉普拉斯算子 Δ f \Delta f Δf 定义为:
Δ f = ∇ ⋅ ( ∇ f ) = ∂ 2 f ∂ x 1 2 + ∂ 2 f ∂ x 2 2 + ⋯ + ∂ 2 f ∂ x n 2 \Delta f = \nabla \cdot (\nabla f) = \frac{\partial^2 f}{\partial x_1^2} + \frac{\partial^2 f}{\partial x_2^2} + \cdots + \frac{\partial^2 f}{\partial x_n^2} Δf=∇⋅(∇f)=∂x12∂2f+∂x22∂2f+⋯+∂xn2∂2f
其中, ∇ \nabla ∇ 是梯度算子, ∇ ⋅ \nabla \cdot ∇⋅ 是散度算子。
{ u t t − u x x = 0 , x > 0 , t > 0 , u ( x , 0 ) = sin x , x > 0 , u t ( x , 0 ) = cos x , x > 0 , u x ( 0 , t ) = 1 , t ≥ 0 \left\{ \begin{aligned} &u_{tt} -u_{xx} = 0, x>0,t>0, \\ &u(x,0) = \sin x, x>0, \\ &u_{t}(x,0) = \cos x, x>0, \\ &u_{x}(0,t) = 1, t\geq 0 \end{aligned} \right. ⎩ ⎨ ⎧utt−uxx=0,x>0,t>0,u(x,0)=sinx,x>0,ut(x,0)=cosx,x>0,ux(0,t)=1,t≥0
定义在 Ω = [ 0 , 1 ] × [ 0 , 1 ] \Omega=[0,1]\times[0,1] Ω=[0,1]×[0,1] 区域上的光滑曲面 v ( x , y ) v(x,y) v(x,y),在边界取值为0. 那么(1)请写出泛函 J ( v ) J(v) J(v),用于表示该曲面的表面积,并给出其允许函数类 M M M,从而使得泛函有定义。(2)若 u ∈ C 2 ( Ω ‾ ) u\in C^2(\overline{\Omega}) u∈C2(Ω),请求解出与 J ( u ) = m i n M J ( v ) J(u)=min_{M}J(v) J(u)=minMJ(v)等价的偏微分方程定解问题。(3)请给出这个定解问题的解。
设 Ω \Omega Ω是 R 3 \mathbb{R}^3 R3中的有界开区域, Γ \Gamma Γ是 Ω \Omega Ω的光滑边界。 Ω \Omega Ω上定义的泛函为 J ( v ) = ∭ Ω 1 2 [ ( ∂ v ∂ x ) 2 + ( ∂ v ∂ y ) 2 + ( ∂ v ∂ z ) 2 ] d x d y d z + ∬ Γ ( 1 2 σ v 2 − g v ) d s J(v)=\iiint_{\Omega}\frac{1}{2}[(\frac{\partial{v}}{\partial{x}})^2+(\frac{\partial{v}}{\partial{y}})^2+(\frac{\partial{v}}{\partial{z}})^2]dxdydz+\iint_{\Gamma}(\frac{1}{2}\sigma v^2-gv)ds J(v)=∭Ω21[(∂x∂v)2+(∂y∂v)2+(∂z∂v)2]dxdydz+∬Γ(21σv2−gv)ds, V = C 2 ( Ω ) ∩ C 1 ( Ω ‾ ) V=C^2(\Omega)\cap C^1(\overline{\Omega}) V=C2(Ω)∩C1(Ω),变分问题的描述为:求 u ∈ V u\in V u∈V,使得 J ( u ) = m i n v ∈ V J ( v ) J(u)=min_{v\in V}J(v) J(u)=minv∈VJ(v)。请导出与这个变分问题等价的边值问题。
设 Ω \Omega Ω是 R 2 \mathbb{R}^2 R2中的有界开区域, Γ \Gamma Γ是 Ω \Omega Ω的光滑边界。 Ω \Omega Ω上定义的泛函为 J ( v ) = ∬ Ω 1 2 [ ( ∂ v ∂ x ) 2 + ( ∂ v ∂ y ) 2 ] d x d y + ∫ Γ ( 1 2 σ v 2 − g v ) d s J(v)=\iint_{\Omega}\frac{1}{2}[(\frac{\partial{v}}{\partial{x}})^2+(\frac{\partial{v}}{\partial{y}})^2]dxdy+\int_{\Gamma}(\frac{1}{2}\sigma v^2-gv)ds J(v)=∬Ω21[(∂x∂v)2+(∂y∂v)2]dxdy+∫Γ(21σv2−gv)ds, V = C 2 ( Ω ) ∩ C 1 ( Ω ‾ ) V=C^2(\Omega)\cap C^1(\overline{\Omega}) V=C2(Ω)∩C1(Ω),变分问题的描述为:求 u ∈ V u\in V u∈V,使得 J ( u ) = m i n v ∈ V J ( v ) J(u)=min_{v\in V}J(v) J(u)=minv∈VJ(v)。请导出与这个变分问题等价的边值问题。
Q = { ( x , t ) ∣ x ∈ ( 0 , l ) , t ∈ [ 0 , T ] } Q=\{(x,t)|x\in(0,l),t\in[0,T]\} Q={(x,t)∣x∈(0,l),t∈[0,T]}, Γ \Gamma Γ是 Q Q Q的由三条边组成的抛物边界。请详细地证明:设 u ∈ C 2 , 1 ( Q ) ∩ C ( ( ‾ Q ) ) u\in C^{2,1}(Q)\cap C(\overline(Q)) u∈C2,1(Q)∩C((Q))且 u u u满足 u t − a 2 u x x = f ≥ 0 u_{t}-a^2u_{xx}=f\geq0 ut−a2uxx=f≥0,那么 m i n Q ‾ u ( x , t ) = m i n Γ ‾ u ( x , t ) \ \mathop{min}\limits_{\overline{Q}}u(x,t)=\mathop{min}\limits_{\overline{\Gamma}}u(x,t) Qminu(x,t)=Γminu(x,t)
Q = { ( x , t ) ∣ x ∈ ( 0 , l ) , t ∈ [ 0 , T ] } Q=\{(x,t)|x\in(0,l),t\in[0,T]\} Q={(x,t)∣x∈(0,l),t∈[0,T]},KaTeX parse error: Expected 'EOF', got '}' at position 27: …00\leq x\leq l;}̲。请详细地证明:设 u ∈ C 2 , 1 ( Q ) ∩ C ( ( ‾ Q ) ) u\in C^{2,1}(Q)\cap C(\overline(Q)) u∈C2,1(Q)∩C((Q))且 u u u满足 u t − a 2 u x x = f ≥ 0 u_{t}-a^2u_{xx}=f\geq0 ut−a2uxx=f≥0,那么 m i n Q ‾ u ( x , t ) = m i n Γ ‾ u ( x , t ) \ \mathop{min}\limits_{\overline{Q}}u(x,t)=\mathop{min}\limits_{\overline{\Gamma}}u(x,t) Qminu(x,t)=Γminu(x,t)
{ ∂ u ∂ t + ( x + t ) ∂ u ∂ x + u = x , u ( x , 0 ) = x \left\{ \begin{aligned} &\frac{\partial u}{\partial t}+(x+t)\frac{\partial u}{\partial x}+u=x, \\ &u(x,0) = x \end{aligned} \right. ⎩ ⎨ ⎧∂t∂u+(x+t)∂x∂u+u=x,u(x,0)=x
初始条件,边界条件,定解条件,初值问题,边值问题,混合问题,定解问题
在求解PDE时,通常需要指定一些额外的条件,以确保解的唯一性和存在性。这些条件分为两类:初始条件和边界条件。
-
初始条件:初始条件用于确定PDE解随时间的起始状态。它们通常在时间变量的某个初始值上指定解的值。例如,在热传导方程或波动方程的求解中,初始条件可以指定在初始时间点上物体的温度分布或波的形状。如果我们有一个时间变量 t t t 和空间变量 x x x,那么初始条件可以表示为:
u ( x , 0 ) = f ( x ) u(x,0) = f(x) u(x,0)=f(x)
其中, u ( x , t ) u(x,t) u(x,t) 是PDE的解, f ( x ) f(x) f(x) 是给定的初始函数,它描述了在初始时间 t = 0 t=0 t=0 时解的状态。
-
边界条件:边界条件用于确定PDE解在空间域边界上的行为。它们在解的定义域的边界上指定解的值或者解的导数。边界条件可以分为几种类型:
- Dirichlet边界条件:指定解在边界上的值。例如, u ( a , t ) = g ( t ) u(a,t) = g(t) u(a,t)=g(t) 和 u ( b , t ) = h ( t ) u(b,t) = h(t) u(b,t)=h(t) 分别指定了在空间域的左右边界上解的值。
- Neumann边界条件:指定解的导数(通常是法向导数)在边界上的值。例如, ∂ u ∂ x ( a , t ) = g ′ ( t ) \frac{\partial u}{\partial x}(a,t) = g'(t) ∂x∂u(a,t)=g′(t) 和 ∂ u ∂ x ( b , t ) = h ′ ( t ) \frac{\partial u}{\partial x}(b,t) = h'(t) ∂x∂u(b,t)=h′(t) 分别指定了在空间域的左右边界上解的导数值。
- 混合边界条件:结合了Dirichlet和Neumann边界条件,一部分边界上指定解的值,另一部分边界上指定解的导数值。
- 周期性边界条件:指定解在空间域的一端与另一端相同,适用于周期性问题。
-
定解条件
通常把初始条件和边界条件统称为定解条件 -
初值问题/Cauchy问题(Initial Value Problem, IVP):
- 定义:初值问题是指在求解时间依赖的PDE时,给定了初始时间点上解的值的问题。这类问题主要出现在描述时间演化过程的PDE中,如波动方程、热传导方程等。
- 条件:初值问题需要给定初始条件,即在初始时间点上指定解的值。例如,在热传导方程中,初始条件可以指定初始时刻的温度分布。
- 目标:求解初值问题的目标是确定在给定初始条件下,随时间演化的解的行为。
-
边值问题(Boundary Value Problem, BVP):
- 定义:边值问题是指在求解空间依赖的PDE时,给定了空间域边界上解的值或导数的问题。这类问题主要出现在描述空间分布的PDE中,如静态热传导方程、拉普拉斯方程等。
- 条件:边值问题需要给定边界条件,即在空间域的边界上指定解的值或导数值。
- 目标:求解边值问题的目标是确定在给定边界条件下,解在空间域内的分布。
-
混合问题(Mixed Problem):
- 定义:混合问题是指同时考虑了时间和空间依赖的PDE,并且给定了初始条件和边界条件的问题。这类问题结合了初值问题和边值问题的特点,常见于动态过程的描述,如热传导方程、波动方程等。
- 条件:混合问题需要给定初始条件和边界条件,即在初始时间点上指定解的值,并在空间域的边界上指定解的值或导数值。
- 目标:求解混合问题的目标是确定在给定初始条件和边界条件下,解随时间和空间的演化行为。
-
定解问题(Well-Posed Problem):
定解问题 = 一个偏微分方程(PDE)+ 适当的定解条件(初始条件和/或边界条件)的组合。
- 定义:定解问题是指一个数学问题满足三个条件:解的存在性(存在一个解)、解的唯一性(只有一个解)、解的连续依赖性(解对初始和边界条件的变化连续敏感)。
- 条件:定解问题的条件包括合适的初始条件和边界条件,以及可能的其他附加条件,以确保解的良好性质。
- 目标:定解问题的目标是确保求得的解是物理上有意义且数学上稳定的,即小的变化在初始或边界条件上只会导致解的小的变化。
CH.1 方程导出和定解条件
动量守恒律和弦振动方程
弦振动方程
∂ 2 u ∂ t 2 = T ρ ∂ 2 u ∂ x 2 \frac{\partial^2 u}{\partial t^2} = \frac{T}{\rho} \frac{\partial^2 u}{\partial x^2} ∂t2∂2u=ρT∂x2∂2u
∂ 2 u ∂ t 2 − T ρ ∂ 2 u ∂ x 2 = f ( x , t ) \frac{\partial^2 u}{\partial t^2} - \frac{T}{\rho} \frac{\partial^2 u}{\partial x^2} = f(x,t) ∂t2∂2u−ρT∂x2∂2u=f(x,t)
第一个方程:无外力的弦振动方程
∂ 2 u ∂ t 2 = T ρ ∂ 2 u ∂ x 2 \frac{\partial^2 u}{\partial t^2} = \frac{T}{\rho} \frac{\partial^2 u}{\partial x^2} ∂t2∂2u=ρT∂x2∂2u
这个方程是理想情况下的弦振动方程,描述了一个完美弹性弦在没有外力作用时的振动。这里, u ( x , t ) u(x,t) u(x,t) 表示弦上某点 x x x 在时间 t t t 的位移, T T T 是弦的张力, ρ \rho ρ 是弦的线密度(单位长度的质量)。方程假设弦是均匀的,张力在整个弦上是恒定的,且弦的振动不足以影响张力和线密度。这是一个纯粹的波动方程,表示波的传播不受外力影响,仅由弦本身的性质决定。
第二个方程:有外力作用的弦振动方程
∂ 2 u ∂ t 2 − T ρ ∂ 2 u ∂ x 2 = f ( x , t ) \frac{\partial^2 u}{\partial t^2} - \frac{T}{\rho} \frac{\partial^2 u}{\partial x^2} = f(x,t) ∂t2∂2u−ρT∂x2∂2u=f(x,t)
这个方程在第一个方程的基础上增加了一个外力项 f ( x , t ) f(x,t) f(x,t),它描述了弦在外力作用下的振动。 f ( x , t ) f(x,t) f(x,t) 是单位质量上的力,它可以是时间和位置的函数。这个方程考虑了外力如何影响弦的振动,使得弦的运动不仅仅由其内在的张力和线密度决定,还受到外力的驱动或阻碍。这种情况下的波动方程更为一般,可以描述更多实际情况,如弦受到周期性激励或阻尼作用时的振动。
主要区别
- 外力的有无:第一个方程描述无外力情况下的弦振动,而第二个方程包含了外力项 f ( x , t ) f(x,t) f(x,t),能够描述弦在外力作用下的振动行为。
- 适用场景:第一个方程适用于理想化的弦振动分析,第二个方程则能够应用于更广泛的实际问题,包括弦受到外部影响的情况。
波动方程
波动方程是描述波动现象的一类偏微分方程,它可以用来描述声波、电磁波、水波等各种波动的传播。在一维空间中,波动方程通常写为:
∂ 2 u ∂ t 2 = c 2 ∂ 2 u ∂ x 2 \frac{\partial^2 u}{\partial t^2} = c^2 \frac{\partial^2 u}{\partial x^2} ∂t2∂2u=c2∂x2∂2u
其中, u ( x , t ) u(x,t) u(x,t) 是波的位移, c c c 是波的传播速度。
弦振动方程与波动方程的关系
弦振动方程是波动方程在描述弦振动时的具体形式。在弦振动的情况下,波的传播 c c c 由弦的张力 T T T 和线密度 ρ \rho ρ 决定,即 c = T ρ c = \sqrt{\frac{T}{\rho}} c=ρT。因此,将这个关系代入波动方程,我们就得到了弦振动方程:
∂ 2 u ∂ t 2 = T ρ ∂ 2 u ∂ x 2 \frac{\partial^2 u}{\partial t^2} = \frac{T}{\rho} \frac{\partial^2 u}{\partial x^2} ∂t2∂2u=ρT∂x2∂2u
∂ 2 u ∂ t 2 − T ρ ∂ 2 u ∂ x 2 = f ( x , t ) \frac{\partial^2 u}{\partial t^2} - \frac{T}{\rho} \frac{\partial^2 u}{\partial x^2} = f(x,t) ∂t2∂2u−ρT∂x2∂2u=f(x,t)
可以看出,弦振动方程是波动方程在特定物理条件下的一个特例。它描述了弦上的波动现象,即弦的振动。在更高维的空间中,波动方程也有相应的形式来描述波在多维空间中的传播。
弦振动方程和波动方程的关系是?
弦振动方程实际上是波动方程在特定情况下的一个实例。
波动方程
波动方程是描述波动现象的一类偏微分方程,它可以用来描述声波、电磁波、水波等各种波动的传播。在一维空间中,波动方程通常写为:
∂ 2 u ∂ t 2 = c 2 ∂ 2 u ∂ x 2 \frac{\partial^2 u}{\partial t^2} = c^2 \frac{\partial^2 u}{\partial x^2} ∂t2∂2u=c2∂x2∂2u
其中, u ( x , t ) u(x,t) u(x,t) 是波的位移, c c c 是波的传播速度。
弦振动方程与波动方程的关系
弦振动方程是波动方程在描述弦振动时的具体形式。在弦振动的情况下,波的传播速度 c c c 由弦的张力 T T T 和线密度 ρ \rho ρ 决定,即 c = T ρ c = \sqrt{\frac{T}{\rho}} c=ρT。因此,将这个关系代入波动方程,我们就得到了弦振动方程:
∂ 2 u ∂ t 2 = T ρ ∂ 2 u ∂ x 2 \frac{\partial^2 u}{\partial t^2} = \frac{T}{\rho} \frac{\partial^2 u}{\partial x^2} ∂t2∂2u=ρT∂x2∂2u
可以看出,弦振动方程是波动方程在特定物理条件下的一个特例。它描述了弦上的波动现象,即弦的振动。在更高维的空间中,波动方程也有相应的形式来描述波在多维空间中的传播。
弦振动方程的初始条件和边界条件
有外力作用的弦振动方程通常表示为:
∂ 2 u ∂ t 2 − c 2 ∂ 2 u ∂ x 2 = f ( x , t ) \frac{\partial^2 u}{\partial t^2} - c^2 \frac{\partial^2 u}{\partial x^2} = f(x, t) ∂t2∂2u−c2∂x2∂2u=f(x,t)
其中, u ( x , t ) u(x, t) u(x,t) 表示弦上的位移, c c c 是弦上波速, f ( x , t ) f(x, t) f(x,t) 是外力项。对于这个方程,初始条件通常包括弦的初始位移和初始速度,即:
初始位移条件
给定弦在时间 (t = 0) 时的位移分布:
u ( x , 0 ) = ϕ ( x ) u(x, 0) = \phi(x) u(x,0)=ϕ(x)
其中, ϕ ( x ) \phi(x) ϕ(x) 是已知函数,表示弦在初始时刻的形状。
初始速度条件
给定弦在时间 (t = 0) 时的速度分布:
∂ u ∂ t ( x , 0 ) = ψ ( x ) \frac{\partial u}{\partial t}(x, 0) = \psi(x) ∂t∂u(x,0)=ψ(x)
其中, ψ ( x ) \psi(x) ψ(x) 是已知函数,表示弦在初始时刻的速度分布。
初始条件 ϕ ( x ) \phi(x) ϕ(x) 和 ψ ( x ) \psi(x) ψ(x) 通常由实际物理情况决定,它们描述了弦在开始振动前的状态。在求解弦振动方程时,初始条件和边界条件一起决定了问题的唯一解。
在有外力作用下的弦振动方程三种常见的边界条件:
1. 固定边界条件(Dirichlet 边界条件)
固定边界条件假设弦的两端固定不动,即:
u ( 0 , t ) = 0 , u ( L , t ) = 0 u(0, t) = 0, \quad u(L, t) = 0 u(0,t)=0,u(L,t)=0
其中, L L L 是弦的长度。这种边界条件适用于弦的两端被完全固定的情况。
2. 自由边界条件(Neumann 边界条件)
自由边界条件假设弦的两端自由,即弦端的斜率为零:
∂ u ∂ x ( 0 , t ) = 0 , ∂ u ∂ x ( L , t ) = 0 \frac{\partial u}{\partial x}(0, t) = 0, \quad \frac{\partial u}{\partial x}(L, t) = 0 ∂x∂u(0,t)=0,∂x∂u(L,t)=0
这种边界条件适用于弦的两端没有受到限制的情况。
3. 混合边界条件
混合边界条件是指弦的一端固定,另一端自由,即:
u ( 0 , t ) = 0 , ∂ u ∂ x ( L , t ) = 0 u(0, t) = 0, \quad \frac{\partial u}{\partial x}(L, t) = 0 u(0,t)=0,∂x∂u(L,t)=0
或者相反的情况:
∂ u ∂ x ( 0 , t ) = 0 , u ( L , t ) = 0 \frac{\partial u}{\partial x}(0, t) = 0, \quad u(L, t) = 0 ∂x∂u(0,t)=0,u(L,t)=0
这种边界条件适用于弦的一端被固定,另一端自由的情况。
变分原理
定解问题适定性
在偏微分方程(PDEs)的研究中,定解问题的适定性是一个重要的概念。一个定解问题被认为是适定的(well-posed),如果它满足以下三个要素:
1. 存在性(Existence)
- 定义:对于给定的边界条件和初始条件,存在至少一个解满足偏微分方程。
- 说明:这意味着问题的数学模型是完整的,可以找到至少一个函数(解)来描述所研究的物理或数学现象。
2. 唯一性(Uniqueness)
- 定义:对于给定的边界条件和初始条件,偏微分方程的解是唯一的。
- 说明:这保证了问题的解不会有歧义,即不会有两个或两个以上不同的函数都满足同一个定解问题。
3. 稳定性(Stability)
- 定义:解对初始条件和边界条件的小变化是连续的或稳定的,即初始条件或边界条件的小变化只会导致解的小变化。
- 说明:这意味着问题的解是可靠的,不会因为初始或边界条件的微小误差而产生剧烈的变化。
重要性
- 一个适定的定解问题是解决实际物理和工程问题的基础。如果一个问题不适定,那么它可能没有解,或者有多个解,或者解对于初始或边界条件非常敏感,这些都会使得问题的数学模型失去实际意义。
- 在数值方法和计算机模拟中,适定性也是一个关键因素,因为它决定了数值解的可靠性和稳定性。
能量守恒和热传导方程
Ω \Omega Ω 是三维物体空间区域,那么 Ω ‾ \overline{\Omega} Ω 和 ∂ Ω \partial{\Omega} ∂Ω 的区别是?
在数学中,对于一个三维物体空间区域 Ω \Omega Ω, Ω ‾ \overline{\Omega} Ω 和 ∂ Ω \partial{\Omega} ∂Ω 分别表示:
-
Ω ‾ \overline{\Omega} Ω:表示区域 Ω \Omega Ω 的闭包,即 Ω \Omega Ω 加上它的边界。换句话说, Ω ‾ \overline{\Omega} Ω 包含了 Ω \Omega Ω 内部的所有点以及边界上的所有点。
-
∂ Ω \partial{\Omega} ∂Ω:表示区域 Ω \Omega Ω 的边界,即那些不属于 Ω \Omega Ω 内部但与 Ω \Omega Ω 相邻的点的集合。边界 ∂ Ω \partial{\Omega} ∂Ω 只包含 Ω \Omega Ω 的外缘,不包括内部点。
简而言之, Ω ‾ \overline{\Omega} Ω 是 Ω \Omega Ω 和它的边界的总和,而 ∂ Ω \partial{\Omega} ∂Ω 仅仅是边界本身。
热传导方程描述了热量在物体中的传播。当考虑热源和热汇时,热传导方程可以表示为:
∂ u ∂ t − α ∇ 2 u = q ( x , t ) \frac{\partial u}{\partial t} - \alpha \nabla^2 u = q(x, t) ∂t∂u−α∇2u=q(x,t)
其中, u ( x , t ) u(x, t) u(x,t) 表示温度, α \alpha α 是热传导系数, ∇ 2 \nabla^2 ∇2 是三维拉普拉斯算子, q ( x , t ) q(x, t) q(x,t) 是单位体积上的热源项。
热源的情况
热源表示在某个区域内产生热量,因此在热源区域内, q ( x , t ) > 0 q(x, t) > 0 q(x,t)>0。热传导方程为:
∂ u ∂ t − α ∇ 2 u = q ( x , t ) \frac{\partial u}{\partial t} - \alpha \nabla^2 u = q(x, t) ∂t∂u−α∇2u=q(x,t)
其中, q ( x , t ) q(x, t) q(x,t) 是正的,表示热量的产生。
热汇的情况
热汇表示在某个区域内吸收热量,因此在热汇区域内, q ( x , t ) < 0 q(x, t) < 0 q(x,t)<0。热传导方程为:
∂ u ∂ t − α ∇ 2 u = q ( x , t ) \frac{\partial u}{\partial t} - \alpha \nabla^2 u = q(x, t) ∂t∂u−α∇2u=q(x,t)
其中, q ( x , t ) q(x, t) q(x,t) 是负的,表示热量的消耗。
在实际问题中,热源和热汇可以是时间和空间的函数,也可以是常数。根据具体的物理情况选择合适的热源项 q ( x , t ) q(x, t) q(x,t) 对于解决热传导问题至关重要。
质量守恒和连续性方程
散度算子
在偏微分方程(PDE)中,散度算子是一个重要的数学工具,用于描述向量场中某一点的流出量或流入量。散度算子作用于向量场
,给出一个标量场
,表示向量场在每一点的“发散”程度。
对于三维空间中的向量场 F = ( F x , F y , F z ) \mathbf{F} = (F_x, F_y, F_z) F=(Fx,Fy,Fz),散度算子 ∇ ⋅ \nabla \cdot ∇⋅ 的定义为:
∇ ⋅ F = ∂ F x ∂ x + ∂ F y ∂ y + ∂ F z ∂ z \nabla \cdot \mathbf{F} = \frac{\partial F_x}{\partial x} + \frac{\partial F_y}{\partial y} + \frac{\partial F_z}{\partial z} ∇⋅F=∂x∂Fx+∂y∂Fy+∂z∂Fz
其中, F x , F y , F z F_x, F_y, F_z Fx,Fy,Fz 分别是向量场 F \mathbf{F} F 在 x , y , z x, y, z x,y,z 方向上的分量, ∂ ∂ x , ∂ ∂ y , ∂ ∂ z \frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z} ∂x∂,∂y∂,∂z∂ 分别表示对应方向上的偏导数。
散度算子的几个重要性质包括:
-
物理意义:散度算子衡量了向量场在某一点的发散程度。
若 ∇ ⋅ F > 0 \nabla \cdot \mathbf{F} > 0 ∇⋅F>0,表示该点是向量场的“源”(流出量大于流入量);
若 ∇ ⋅ F < 0 \nabla \cdot \mathbf{F} < 0 ∇⋅F<0,表示该点是向量场的“汇”(流入量大于流出量);
若 ∇ ⋅ F = 0 \nabla \cdot \mathbf{F} = 0 ∇⋅F=0,表示向量场在该点既不发散也不汇聚,即为无源无汇。 -
线性:散度算子是线性的,即对于任意向量场 F \mathbf{F} F 和 G \mathbf{G} G 以及任意常数 a a a 和 b b b,有 ∇ ⋅ ( a F + b G ) = a ( ∇ ⋅ F ) + b ( ∇ ⋅ G ) \nabla \cdot (a\mathbf{F} + b\mathbf{G}) = a(\nabla \cdot \mathbf{F}) + b(\nabla \cdot \mathbf{G}) ∇⋅(aF+bG)=a(∇⋅F)+b(∇⋅G)。
-
散度定理:散度算子与散度定理(也称为高斯定理)紧密相关。散度定理将向量场在某一闭合表面上的流量与该表面包围的体积内的散度进行关联。
连续性方程是一个描述物质、能量或其他物理量如何随时间和空间变化的偏微分方程。在流体力学中,连续性方程通常用来描述质量守恒。对于不可压缩流体,连续性方程可以表示为:
∇ ⋅ v = 0 \nabla \cdot \mathbf{v} = 0 ∇⋅v=0
其中, v \mathbf{v} v 是流体的速度矢量, ∇ ⋅ \nabla \cdot ∇⋅ 是散度算子。这个方程表明,在任何给定的体积内,流入的质量流量等于流出的质量流量,因此质量是守恒的。
对于可压缩流体,连续性方程需要考虑密度的变化,可以表示为:
∂ ρ ∂ t + ∇ ⋅ ( ρ v ) = 0 , Ω × ( 0 , ∞ ) \frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{v}) = 0, \Omega\times(0,\infty) ∂t∂ρ+∇⋅(ρv)=0,Ω×(0,∞)
其中, ρ \rho ρ 是流体的密度,该连续性方程描述了流体密度随时间和空间的变化,以确保质量守恒。这个方程表明,密度随时间的变化率加上密度与速度矢量乘积的散度等于零。在这种情况下,连续性方程描述了质量守恒的原理,即在没有外部质量源或汇的情况下,流体的质量在任何给定的体积内是守恒的。
简而言之,连续性方程是描述物理系统中守恒定律的基本方程之一,它表明某个物理量(如质量、能量等)在没有外部干扰的情况下,在空间和时间上是守恒的。在流体力学中,它是描述流体运动和行为的基本方程之一。
CH2. 波动方程
一阶线性ODE的求解公式
一阶线性常微分方程(ODE)通常具有以下形式:
d y d x + p ( x ) y = q ( x ) \frac{dy}{dx} + p(x)y = q(x) dxdy+p(x)y=q(x)
因此,一阶线性ODE的通解公式为:
y ( x ) = 1 e ∫ p ( x ) d x ( ∫ e ∫ p ( x ) d x q ( x ) d x + C ) y(x) = \frac{1}{e^{\int p(x) \, dx}} \left( \int e^{\int p(x) \, dx} q(x) \, dx + C \right) y(x)=e∫p(x)dx1(∫e∫p(x)dxq(x)dx+C)
不定积分表格积分法
分部积分的表格积分方法是求解不定积分时的一种技巧,特别适用于被积函数为两个函数乘积的形式,且其中一个函数的多次导数最终为零的情况。该方法通过构建一个表格来系统地应用分部积分公式,从而简化计算过程。下面是详细的步骤:
-
选择函数:将被积函数分解为两部分,一部分是容易求导的函数(记为 u u u),另一部分是容易积分的函数(记为 d v dv dv)。
-
构建表格:
- 在表格的第一列,从上到下依次写下 u u u的各阶导数(直到导数为零或达到合适的阶数)。
- 在表格的第二列,从上到下依次写下 d v dv dv的各阶积分(不需要加常数项)。
-
交错乘积:从表格的第一行开始,沿对角线交错地将第一列的元素与第二列的元素相乘,即第一行的 u u u乘以第二行的 v v v,第二行的 u ′ u' u′乘以第三行的 v v v,依此类推。乘积的正负号交替变化,第一个乘积为正。
-
求和:将上一步得到的所有乘积相加,得到的和即为原不定积分的解。
示例
假设我们要求解不定积分 ∫ x 2 e x d x \int x^2 e^x \,dx ∫x2exdx。
-
选择函数:令 u = x 2 u = x^2 u=x2(易求导), d v = e x d x dv = e^x dx dv=exdx(易积分)。
-
构建表格:
u u u d v dv dv x 2 x^2 x2 e x e^x ex 2 x 2x 2x e x e^x ex 2 2 2 e x e^x ex 0 0 0 e x e^x ex -
交错乘积:
- x 2 e x x^2 e^x x2ex(正)
- − 2 x e x -2x e^x −2xex(负)
- 2 e x 2e^x 2ex(正)
-
求和:
∫ x 2 e x d x = x 2 e x − 2 x e x + 2 e x + C \int x^2 e^x \,dx = x^2 e^x - 2x e^x + 2e^x + C ∫x2exdx=x2ex−2xex+2ex+C
其中 C C C 是积分常数。
如何理解波动方程的特征线?
波动方程的特征线是一种用于理解和求解偏微分方程的重要概念。特征线可以被看作是波动在空间和时间中传播的路径。在波动方程的上下文中,特征线通常代表了波前的移动,即波的最前端沿着这些线传播。
对于一维波动方程:
∂ 2 u ∂ t 2 = c 2 ∂ 2 u ∂ x 2 \frac{\partial^2 u}{\partial t^2} = c^2 \frac{\partial^2 u}{\partial x^2} ∂t2∂2u=c2∂x2∂2u
特征线由以下方程给出:
x = c t + x 0 和 x = − c t + x 0 x = ct + x_0 \quad \text{和} \quad x = -ct + x_0 x=ct+x0和x=−ct+x0
这里, x 0 x_0 x0 是初始位置。这两条线代表了波以速度 c c c 向正 x x x 方向和负 x x x 方向传播的路径。
通俗地理解,可以将特征线想象成波浪在海面上的移动轨迹。如果你在海边扔了一块石头,波浪会以一定的速度向外扩散。这些扩散的波浪前沿就沿着特征线移动。特征线告诉我们,波动在任何给定时刻的位置,以及它是如何随着时间的推移而移动的。
在求解波动方程时,特征线方法可以帮助我们将偏微分方程简化为沿着特征线的常微分方程,这通常使得问题更容易解决。
可压缩流体的一维连续性方程的特征线
为了更清楚地理解特征线的概念,我们可以结合可压缩流体的一维连续性方程的初值问题来详细推导和解释特征线。
假设我们有如下的一维连续性方程初值问题:
∂
ρ
∂
t
+
∂
(
ρ
u
)
∂
x
=
0
,
x
∈
R
,
t
>
0
\frac{\partial \rho}{\partial t} + \frac{\partial (\rho u)}{\partial x} = 0, \quad x \in \mathbb{R}, \, t > 0
∂t∂ρ+∂x∂(ρu)=0,x∈R,t>0]
ρ
(
x
,
0
)
=
ρ
0
(
x
)
,
x
∈
R
\rho(x, 0) = \rho_0(x), \quad x \in \mathbb{R}
ρ(x,0)=ρ0(x),x∈R
其中, ρ ( x , t ) \rho(x,t) ρ(x,t) 是流体密度, u ( x , t ) u(x,t) u(x,t) 是流体速度, ρ 0 ( x ) \rho_0(x) ρ0(x) 是初始时刻的密度分布。
为了推导特征线,我们首先假设存在一条曲线 x ( t ) x(t) x(t) 满足以下微分方程:
d
x
d
t
=
u
(
x
(
t
)
,
t
)
\frac{dx}{dt} = u(x(t), t)
dtdx=u(x(t),t)
这条曲线被称为特征线,它代表了流体粒子的运动轨迹。沿着这条特征线,我们可以将连续性方程写成如下形式:
d ρ d t + ρ ∂ u ∂ x = 0 \frac{d\rho}{dt} + \rho \frac{\partial u}{\partial x} = 0 dtdρ+ρ∂x∂u=0
其中, d d t \frac{d}{dt} dtd 表示沿着特征线的导数。这是一个沿着特征线的常微分方程,描述了流体密度沿着流体粒子的运动轨迹的变化。
由于我们知道初始时刻的密度分布 ρ 0 ( x ) \rho_0(x) ρ0(x),我们可以使用特征线来追踪每个流体粒子的运动,并确定任意时刻 t t t 和位置 x x x 处的密度 ρ ( x , t ) \rho(x,t) ρ(x,t)。具体来说,对于给定的 x x x 和 t t t,我们需要找到通过点 ( x , t ) (x,t) (x,t) 的特征线,并沿着这条线追溯回初始时刻,以确定该点的密度。
总的来说,特征线为我们提供了一种方法,通过追踪流体粒子的运动轨迹来解决一维连续性方程的初值问题。沿着特征线,连续性方程简化为沿流体粒子路径的常微分方程,从而使得问题的求解变得更加直观和简单。
为什么 ∂ u ∂ t + ( x + t ) ∂ u ∂ x + u = x \frac{\partial u}{\partial t}+(x+t)\frac{\partial u}{\partial x}+u=x ∂t∂u+(x+t)∂x∂u+u=x 的特征线是由方程 d x d t = x + t \frac{dx}{dt}=x+t dtdx=x+t 确定的?
这是因为特征线的概念是基于将偏微分方程沿某个方向(即特征线的方向)简化为常微分方程的思想。
对于一般形式的一阶线性偏微分方程
∂ u ∂ t + a ( x , t ) ∂ u ∂ x = b ( x , t , u ) \frac{\partial u}{\partial t} + a(x, t) \frac{\partial u}{\partial x} = b(x, t, u) ∂t∂u+a(x,t)∂x∂u=b(x,t,u)
特征线是由微分方程
d x d t = a ( x , t ) \frac{dx}{dt} = a(x, t) dtdx=a(x,t)
确定的。沿着特征线,原偏微分方程简化为关于 u u u 的常微分方程。
在我们的例子中,系数 a ( x , t ) a(x, t) a(x,t) 对应于 ( x + t ) (x + t) (x+t),因此特征线由
d x d t = x + t \frac{dx}{dt} = x + t dtdx=x+t
确定。沿着这些特征线,原偏微分方程变为关于 u u u 的常微分方程,从而使得求解过程变得更加简单。
无穷边界情况受外力作用下的一维波动方程初值问题解的表达式
对于无穷边界情况下受外力作用的一维波动方程初值问题,我们可以考虑以下形式:
{ ∂ 2 u ∂ t 2 = c 2 ∂ 2 u ∂ x 2 + f ( x , t ) , − ∞ < x < ∞ , t > 0 , u ( x , 0 ) = ϕ ( x ) , − ∞ < x < ∞ , ∂ u ∂ t ( x , 0 ) = ψ ( x ) , − ∞ < x < ∞ , \begin{cases} \frac{\partial^2 u}{\partial t^2} = c^2 \frac{\partial^2 u}{\partial x^2} + f(x, t), & -\infty < x < \infty, \ t > 0, \\ u(x,0) = \phi(x), & -\infty < x < \infty, \\ \frac{\partial u}{\partial t}(x,0) = \psi(x), & -\infty < x < \infty, \end{cases} ⎩ ⎨ ⎧∂t2∂2u=c2∂x2∂2u+f(x,t),u(x,0)=ϕ(x),∂t∂u(x,0)=ψ(x),−∞<x<∞, t>0,−∞<x<∞,−∞<x<∞,
其中 u ( x , t ) u(x,t) u(x,t) 表示点 x x x 在时刻 t t t 的位移, c c c 是波速, f ( x , t ) f(x, t) f(x,t) 是外力项, ϕ ( x ) \phi(x) ϕ(x) 和 ψ ( x ) \psi(x) ψ(x) 分别是初始位移和初始速度的分布函数。
该问题的解可以通过叠加原理得到,即将解分为齐次部分和非齐次部分的和。解的表达式为:
u ( x , t ) = 1 2 [ ϕ ( x + c t ) + ϕ ( x − c t ) ] + 1 2 c ∫ x − c t x + c t ψ ( s ) d s + 1 2 c ∫ 0 t ∫ x − c ( t − τ ) x + c ( t − τ ) f ( s , τ ) d s d τ u(x,t) = \frac{1}{2}[\phi(x+ct) + \phi(x-ct)] + \frac{1}{2c} \int_{x-ct}^{x+ct} \psi(s) \, ds + \frac{1}{2c} \int_0^t \int_{x-c(t-\tau)}^{x+c(t-\tau)} f(s, \tau) \, ds \, d\tau u(x,t)=21[ϕ(x+ct)+ϕ(x−ct)]+2c1∫x−ctx+ctψ(s)ds+2c1∫0t∫x−c(t−τ)x+c(t−τ)f(s,τ)dsdτ
当 f ≡ 0 f\equiv0 f≡0 时,称下面的为 D’Alembert’s formula(达朗贝尔公式)
u ( x , t ) = 1 2 [ ϕ ( x + c t ) + ϕ ( x − c t ) ] + 1 2 c ∫ x − c t x + c t ψ ( s ) d s u(x,t) = \frac{1}{2}[\phi(x+ct) + \phi(x-ct)] + \frac{1}{2c} \int_{x-ct}^{x+ct} \psi(s) \, ds u(x,t)=21[ϕ(x+ct)+ϕ(x−ct)]+2c1∫x−ctx+ctψ(s)ds
这里的解表达式与有限边界情况类似,但是由于边界是无穷的,因此不需要考虑边界条件的影响。最后一项是由外力 f ( x , t ) f(x, t) f(x,t) 引起的位移,通过双重积分计算得到。
推论
如果 f f f, ϕ \phi ϕ, 和 ψ \psi ψ 分别是奇函数、偶函数或周期函数,那么波动方程的解 u u u 也会表现出特定的对称性或周期性:
-
奇函数:
- 如果 ϕ ( x ) \phi(x) ϕ(x) 和 ψ ( x ) \psi(x) ψ(x) 是奇函数(即 ϕ ( − x ) = − ϕ ( x ) \phi(-x) = -\phi(x) ϕ(−x)=−ϕ(x) 和 ψ ( − x ) = − ψ ( x ) \psi(-x) = -\psi(x) ψ(−x)=−ψ(x)),并且 f ( x , t ) f(x, t) f(x,t) 关于 x x x 也是奇函数(即 f ( − x , t ) = − f ( x , t ) f(-x, t) = -f(x, t) f(−x,t)=−f(x,t)),那么解 u ( x , t ) u(x, t) u(x,t) 也将是关于 x x x 的奇函数,即 u ( − x , t ) = − u ( x , t ) u(-x, t) = -u(x, t) u(−x,t)=−u(x,t)。
-
偶函数:
- 如果 ϕ ( x ) \phi(x) ϕ(x) 和 ψ ( x ) \psi(x) ψ(x) 是偶函数(即 ϕ ( − x ) = ϕ ( x ) \phi(-x) = \phi(x) ϕ(−x)=ϕ(x) 和 ψ ( − x ) = ψ ( x ) \psi(-x) = \psi(x) ψ(−x)=ψ(x)),并且 f ( x , t ) f(x, t) f(x,t) 关于 x x x 也是偶函数(即 f ( − x , t ) = f ( x , t ) f(-x, t) = f(x, t) f(−x,t)=f(x,t)),那么解 u ( x , t ) u(x, t) u(x,t) 也将是关于 x x x 的偶函数,即 u ( − x , t ) = u ( x , t ) u(-x, t) = u(x, t) u(−x,t)=u(x,t)。
-
周期函数:
- 如果 ϕ ( x ) \phi(x) ϕ(x), ψ ( x ) \psi(x) ψ(x), 和 f ( x , t ) f(x, t) f(x,t) 都是关于 x x x 的周期函数,具有相同的周期 L L L(即 ϕ ( x + L ) = ϕ ( x ) \phi(x+L) = \phi(x) ϕ(x+L)=ϕ(x), ψ ( x + L ) = ψ ( x ) \psi(x+L) = \psi(x) ψ(x+L)=ψ(x), f ( x + L , t ) = f ( x , t ) f(x+L, t) = f(x, t) f(x+L,t)=f(x,t)),那么解 u ( x , t ) u(x, t) u(x,t) 也将是关于 x x x 的周期函数,具有相同的周期 L L L,即 u ( x + L , t ) = u ( x , t ) u(x+L, t) = u(x, t) u(x+L,t)=u(x,t)。
这些推论基于波动方程解的线性性质和积分操作的性质。对称性或周期性的传递是由于方程和初始条件的对称性或周期性直接影响了解的形式。
什么是半无界问题?
在偏微分方程(PDE)中,特别是在波动方程的研究中,半无界问题是指空间域在某些方向上是无限的,而在其他方向上则受到限制的问题。换句话说,这类问题的空间区域是半无限的。
以一维波动方程为例,考虑方程:
∂ 2 u ∂ t 2 = c 2 ∂ 2 u ∂ x 2 \frac{\partial^2 u}{\partial t^2} = c^2 \frac{\partial^2 u}{\partial x^2} ∂t2∂2u=c2∂x2∂2u
其中 u ( x , t ) u(x, t) u(x,t) 是波动函数, c c c 是波速。
-
全无界问题:如果空间域 x x x 范围是 ( − ∞ , ∞ ) (-\infty, \infty) (−∞,∞),则称这个问题为全无界问题。
-
半无界问题:如果空间域 x x x 范围是 [ 0 , ∞ ) [0, \infty) [0,∞) 或 ( − ∞ , 0 ] (-\infty, 0] (−∞,0],即一侧是无限的而另一侧有边界,则称这个问题为半无界问题。
半无界问题的边界条件通常在有限的一侧给出,例如在 x = 0 x=0 x=0 处给出 u ( 0 , t ) u(0, t) u(0,t) 的值或其导数的值。而在无限远处( x → ∞ x \rightarrow \infty x→∞ 或 x → − ∞ x \rightarrow -\infty x→−∞),通常假设解满足某种形式的衰减条件,以确保问题的物理意义和数学解的唯一性。
一维波动方程的能量不等式
∫ Ω τ [ u t 2 ( x , τ ) + a 2 u x 2 ( x , τ ) ] d x ≤ M [ ∫ Ω 0 ( ψ 2 + a 2 φ x 2 ) d x + ∬ K τ f 2 ( x , t ) d x d t ] \int_{\Omega_{\tau}}[u_{t}^2(x,\tau)+a^2u_{x}^2(x,\tau)]dx\leq M[\int_{\Omega_{0}}(\psi^2+a^2\varphi_x^2)dx+\iint_{K_{\tau}}f^2(x,t)dxdt] ∫Ωτ[ut2(x,τ)+a2ux2(x,τ)]dx≤M[∫Ω0(ψ2+a2φx2)dx+∬Kτf2(x,t)dxdt]
这个波动方程的能量不等式表示了解的能量在特定时刻 τ \tau τ 与初始能量和外力作用下的能量输入之间的关系。让我们逐步解释这个不等式的各个部分:
-
左侧项: ∫ Ω τ [ u t 2 ( x , τ ) + a 2 u x 2 ( x , τ ) ] d x \int_{\Omega_{\tau}}[u_{t}^2(x,\tau)+a^2u_{x}^2(x,\tau)]dx ∫Ωτ[ut2(x,τ)+a2ux2(x,τ)]dx 表示在时刻 τ \tau τ 的能量,其中 Ω τ \Omega_{\tau} Ωτ 是考虑的空间区域。这个能量包括两部分:
- u t 2 ( x , τ ) u_{t}^2(x,\tau) ut2(x,τ) 是波动方程解 u ( x , t ) u(x,t) u(x,t) 关于时间的导数的平方,代表动能。
- a 2 u x 2 ( x , τ ) a^2u_{x}^2(x,\tau) a2ux2(x,τ) 是波动方程解关于空间的导数的平方,代表弹性势能。系数 a a a 是波速。
-
右侧项:右侧项包含两个部分,表示初始能量和外力作用下的能量输入:
- ∫ Ω 0 ( ψ 2 + a 2 φ x 2 ) d x \int_{\Omega_{0}}(\psi^2+a^2\varphi_x^2)dx ∫Ω0(ψ2+a2φx2)dx 是初始能量,其中 ψ \psi ψ 和 φ \varphi φ 分别是初始速度和初始位移的分布函数。这一项包括初始动能 ψ 2 \psi^2 ψ2 和初始弹性势能 a 2 φ x 2 a^2\varphi_x^2 a2φx2。
- ∬ K τ f 2 ( x , t ) d x d t \iint_{K_{\tau}}f^2(x,t)dxdt ∬Kτf2(x,t)dxdt 是由外力 f ( x , t ) f(x,t) f(x,t) 作用下的能量输入,其中 K τ K_{\tau} Kτ 是考虑的时空区域,直到时刻 τ \tau τ。
-
不等式:整个不等式 ∫ Ω τ [ u t 2 ( x , τ ) + a 2 u x 2 ( x , τ ) ] d x ≤ M [ ∫ Ω 0 ( ψ 2 + a 2 φ x 2 ) d x + ∬ K τ f 2 ( x , t ) d x d t ] \int_{\Omega_{\tau}}[u_{t}^2(x,\tau)+a^2u_{x}^2(x,\tau)]dx \leq M[\int_{\Omega_{0}}(\psi^2+a^2\varphi_x^2)dx+\iint_{K_{\tau}}f^2(x,t)dxdt] ∫Ωτ[ut2(x,τ)+a2ux2(x,τ)]dx≤M[∫Ω0(ψ2+a2φx2)dx+∬Kτf2(x,t)dxdt] 表示在时刻 τ \tau τ 的能量不会超过一个常数 M M M 乘以初始能量加上外力作用下的能量输入。这个不等式反映了能量的守恒和耗散的原理,在没有外力作用时,能量不会自发增加;而在有外力作用时,能量的增加受到外力的控制。
总之,这个能量不等式提供了波动方程解的能量估计,它是分析解的稳定性和控制问题的重要工具。
混合问题:分离变量法
C 2 ( Q ‾ ) C^2(\overline{Q}) C2(Q) 代表什么含义?
在偏微分方程中, C 2 ( Q ‾ ) C^2(\overline{Q}) C2(Q) 通常表示定义在闭区域 Q ‾ \overline{Q} Q 上的所有二次连续可微函数的集合。这里的闭区域 Q ‾ \overline{Q} Q 通常是指一个包含其边界的区域。
具体来说:
- C C C 表示连续可微函数的集合。
- 上标 2 2 2 表示函数及其一阶和二阶偏导数都连续。
- Q ‾ \overline{Q} Q 表示一个闭区域,即区域及其边界。
因此, C 2 ( Q ‾ ) C^2(\overline{Q}) C2(Q) 中的函数不仅在区域 Q Q Q 内部连续可微,而且在边界上也连续可微,包括函数本身以及它的一阶和二阶偏导数。这样的函数集合在解决偏微分方程的边值问题时非常重要,因为它们满足了在区域内部和边界上的连续性要求。
L 2 [ 0 , l ] L_2[0,l] L2[0,l] 代表什么含义?
在偏微分方程中, L 2 [ 0 , l ] L_2[0, l] L2[0,l] 通常表示一个函数空间。具体来说, L 2 [ 0 , l ] L_2[0, l] L2[0,l] 是指在区间 [ 0 , l ] [0, l] [0,l] 上所有平方可积的函数构成的空间,即所有满足下列条件的函数 f ( x ) f(x) f(x) 的集合:
∫ 0 l ∣ f ( x ) ∣ 2 d x < ∞ \int_0^l |f(x)|^2 \, dx < \infty ∫0l∣f(x)∣2dx<∞
这里的 ∣ f ( x ) ∣ 2 |f(x)|^2 ∣f(x)∣2 是函数 f ( x ) f(x) f(x) 的平方的绝对值,而 ∫ 0 l ∣ f ( x ) ∣ 2 d x \int_0^l |f(x)|^2 \, dx ∫0l∣f(x)∣2dx 表示这个平方在区间 [ 0 , l ] [0, l] [0,l] 上的积分。如果这个积分是有限的,那么函数 f ( x ) f(x) f(x) 就被认为是平方可积的。
L 2 [ 0 , l ] L_2[0, l] L2[0,l] 空间在偏微分方程和泛函分析中非常重要,因为它是一个带有自然内积和范数的完备空间(即希尔伯特空间)。这使得我们可以在这个空间中使用许多强大的数学工具来研究和解决偏微分方程。
波动方程定解问题中的 L u = 0 \mathcal{L}u = 0 Lu=0 代表什么含义?
在偏微分方程中,波动方程定解问题中的 L u = 0 \mathcal{L}u = 0 Lu=0 通常表示波动方程的齐次形式。这里, L \mathcal{L} L 是一个偏微分算子, u u u 是一个关于时间和空间变量的函数,代表波动的位移或其他物理量。
对于一维波动方程, L u = 0 \mathcal{L}u = 0 Lu=0 通常指的是下面的形式:
∂ 2 u ∂ t 2 − c 2 ∂ 2 u ∂ x 2 = 0 \frac{\partial^2 u}{\partial t^2} - c^2 \frac{\partial^2 u}{\partial x^2} = 0 ∂t2∂2u−c2∂x2∂2u=0
其中, u = u ( x , t ) u = u(x, t) u=u(x,t) 是波动的位移, c c c 是波速, ∂ 2 u ∂ t 2 \frac{\partial^2 u}{\partial t^2} ∂t2∂2u 是时间的二阶偏导数, ∂ 2 u ∂ x 2 \frac{\partial^2 u}{\partial x^2} ∂x2∂2u 是空间的二阶偏导数。
这个方程描述了在一维空间中波动的传播,其中 L u = 0 \mathcal{L}u = 0 Lu=0 表示在没有外力作用的情况下波动的自由传播。在解决具体的物理问题时,通常还需要给出初始条件和边界条件来确定波动方程的唯一解。初始条件描述了波动在初始时刻的状态,而边界条件描述了波动在空间边界上的行为。通过求解波动方程并满足相应的初始条件和边界条件,可以得到描述波动传播的完整解。
二阶线性齐次常微分方程的通解公式
二阶线性齐次常微分方程的一般形式是:
a y ′ ′ + b y ′ + c y = 0 a y'' + b y' + c y = 0 ay′′+by′+cy=0
其中, a a a, b b b, 和 c c c 是常数, y ′ ′ y'' y′′ 表示函数 y y y 关于自变量的二阶导数, y ′ y' y′ 表示一阶导数。
为了找到这个方程的通解,我们首先求解其特征方程:
a r 2 + b r + c = 0 a r^2 + b r + c = 0 ar2+br+c=0
这是一个二次方程,其解为:
r = − b ± b 2 − 4 a c 2 a r = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} r=2a−b±b2−4ac
根据特征根 r r r 的不同情况,二阶线性齐次常微分方程的通解有以下几种形式:
-
实数根且不相等:如果特征方程有两个不相等的实数根 r 1 r_1 r1 和 r 2 r_2 r2,则通解为:
y ( x ) = C 1 e r 1 x + C 2 e r 2 x y(x) = C_1 e^{r_1 x} + C_2 e^{r_2 x} y(x)=C1er1x+C2er2x
其中, C 1 C_1 C1 和 C 2 C_2 C2 是任意常数。
-
实数根且相等:如果特征方程有两个相等的实数根 r 1 = r 2 = r r_1 = r_2 = r r1=r2=r,则通解为:
y ( x ) = ( C 1 + C 2 x ) e r x y(x) = (C_1 + C_2 x) e^{r x} y(x)=(C1+C2x)erx
其中, C 1 C_1 C1 和 C 2 C_2 C2 是任意常数。
-
复数根:如果特征方程有一对共轭复数根 r = α ± β i r = \alpha \pm \beta i r=α±βi,其中 i i i 是虚数单位, α \alpha α 和 β \beta β 是实数,那么通解为:
y ( x ) = e α x ( C 1 cos ( β x ) + C 2 sin ( β x ) ) y(x) = e^{\alpha x} (C_1 \cos(\beta x) + C_2 \sin(\beta x)) y(x)=eαx(C1cos(βx)+C2sin(βx))
其中, C 1 C_1 C1 和 C 2 C_2 C2 是任意常数。
在实际应用中,根据初始条件或边界条件,可以确定常数 C 1 C_1 C1 和 C 2 C_2 C2 的具体值。