热传导方程弱极值原理和最大模估计的证明

选填

简答

大题

热传导方程弱极值原理的证明

区域 Q = { ( x , t ) ∣ 0 < x < l , 0 < t ≤ T } Q=\{(x,t)|0<x<l,0<t\leq T\} Q={(x,t)∣0<x<l,0<tT} Γ \Gamma Γ是由图中3条绿色线段组成的 Q Q Q的抛物边界

L u = u t − a 2 u x x = f ( x , t ) Lu=u_{t}-a^2u_{xx}=f(x,t) Lu=uta2uxx=f(x,t)

f ( x , t ) ≥ 0 : 热源 f(x,t)\geq0:热源 f(x,t)0:热源

f ( x , t ) ≤ 0 : 热汇 f(x,t)\leq0:热汇 f(x,t)0:热汇
在这里插入图片描述
弱极值原理的内容

u ∈ C 2 , 1 ( Q ) ∩ C ( Q ‾ ) u\in C^{2,1}(Q)\cap C(\overline{Q}) uC2,1(Q)C(Q) 且满足 L u = f ≤ 0 Lu=f\leq0 Lu=f0, 则 u u u Q ‾ \overline{Q} Q上的最大值必在 Q Q Q 的抛物边界 Γ \Gamma Γ 上达到,即
max ⁡ Q ‾ u ( x , t ) = max ⁡ Γ u ( x , t ) \mathop{\max}\limits_{\overline{Q}}u(x,t)=\mathop{\max}\limits_{\Gamma}u(x,t) Qmaxu(x,t)=Γmaxu(x,t)

证明:

  1. 先利用反证法证明 f < 0 f<0 f<0 时,结论成立
  2. ∀ ϵ > 0 \forall \epsilon>0 ϵ>0 构造辅助函数 v ( x , t ) v(x,t) v(x,t) 归结为 1. 1. 1. 中已证的情况

具体证明过程如下:

f < 0 f<0 f<0, 则可以断言 u u u 必不能在 Q Q Q 内达到最大值。

若不然,设某点 P 0 ( x 0 , t 0 ) ∈ Q ,   s . t .    u ( x 0 , t 0 ) = max ⁡ Q ‾ u ( x , t ) P_0(x_0,t_0)\in Q,\ s.t.\ \ u(x_0,t_0) = \mathop{\max}\limits_{\overline{Q}}u(x,t) P0(x0,t0)Q, s.t.  u(x0,t0)=Qmaxu(x,t)

则根据 u u u 的二阶连续偏导数以及偏导数极值相关定理,可得

∂ u ∂ x ∣ P 0 = 0 ,   ∂ 2 u ∂ x 2 ∣ P 0 ≤ 0 \frac{\partial u}{\partial x} |_{P_0}= 0,\ \frac{\partial^2 u}{\partial x^2}|_{P_0} \leq 0 xuP0=0, x22uP00

而对于 t t t 的偏导数而言,要分情况讨论:

  1. t 0 < T t_0<T t0<T 时, ∂ u ∂ t ∣ P 0 = 0 \frac{\partial u}{\partial t} |_{P_0}= 0 tuP0=0
  2. t 0 = T t_0=T t0=T 时, ∂ u ∂ t ∣ P 0 ≥ 0 \frac{\partial u}{\partial t} |_{P_0}\geq 0 tuP00

t 0 = T t_0=T t0=T 时,将 x 0 x_0 x0 看作常数固定,则 u ( x 0 , t ) u(x_0,t) u(x0,t) 是关于 t t t 的一元函数,在点 T T T 取得最大值,则一元导函数大于等于 0

在这里插入图片描述
∴ f ( x 0 , t 0 ) = ( ∂ u ∂ t − a 2 ∂ 2 u ∂ x 2 ) ∣ P 0 ≥ 0 \therefore f(x_0,t_0) = (\frac{\partial u}{\partial t}-a^2\frac{\partial^2 u}{\partial x^2})|_{P_{0}} \geq 0 f(x0,t0)=(tua2x22u)P00

这与 f < 0 f<0 f<0 的假设矛盾,故 u u u 必不能在 Q Q Q 内达到最大值

再考虑一般情况,即 f ≤ 0 f\leq0 f0

∀ ϵ > 0 \forall \epsilon>0 ϵ>0 构造辅助函数
v ( x , t ) = u ( x , t ) − ϵ t v(x,t) = u(x,t)-\epsilon t v(x,t)=u(x,t)ϵt


L v = L u − L ( ϵ t ) = f − ϵ < 0 Lv=Lu-L(\epsilon t)=f-\epsilon<0 Lv=LuL(ϵt)=fϵ<0

因为 L L L 算子作用到 u u u 上时,对 t t t 求一阶偏导,故对 ϵ t \epsilon t ϵt 求一次偏导为 ϵ \epsilon ϵ

因为 f ≤ 0 , ϵ > 0 f\leq0, \epsilon>0 f0,ϵ>0,所以 f − ϵ < 0 f-\epsilon<0 fϵ<0,应用已证的断言, v v v 一定不能在 Q Q Q 内达到最大值

那么

max ⁡ Q ‾ v ( x , t ) = max ⁡ Γ v ( x , t ) \mathop{\max}\limits_{\overline{Q}}v(x,t)=\mathop{\max}\limits_{\Gamma}v(x,t) Qmaxv(x,t)=Γmaxv(x,t)

再把 u ( x , t ) = v ( x , t ) + ϵ t u(x,t) = v(x,t) + \epsilon t u(x,t)=v(x,t)+ϵt 带入 max ⁡ Q ‾ u ( x , t ) \mathop{\max}\limits_{\overline{Q}}u(x,t) Qmaxu(x,t) 展开得

max ⁡ Q ‾ u ( x , t ) = max ⁡ Q ‾ ( v ( x , t ) + ϵ t ) ≤ max ⁡ Q ‾ v ( x , t ) + max ⁡ Q ‾ ϵ t = max ⁡ Q ‾ v ( x , t ) + ϵ T \mathop{\max}\limits_{\overline{Q}}u(x,t) = \mathop{\max}\limits_{\overline{Q}}(v(x,t) + \epsilon t)\leq\mathop{\max}\limits_{\overline{Q}}v(x,t)+\mathop{\max}\limits_{\overline{Q}}\epsilon t=\mathop{\max}\limits_{\overline{Q}}v(x,t)+\epsilon T Qmaxu(x,t)=Qmax(v(x,t)+ϵt)Qmaxv(x,t)+Qmaxϵt=Qmaxv(x,t)+ϵT
= max ⁡ Γ v ( x , t ) + ϵ T ≤ max ⁡ Γ u ( x , t ) + ϵ T =\mathop{\max}\limits_{\Gamma}v(x,t)+\epsilon T\leq\mathop{\max}\limits_{\Gamma}u(x,t)+\epsilon T =Γmaxv(x,t)+ϵTΓmaxu(x,t)+ϵT

ϵ → 0 \epsilon\rightarrow0 ϵ0,则结论得证

推论

u ∈ C 2 , 1 ( Q ) ∩ C ( Q ‾ ) u\in C^{2,1}(Q)\cap C(\overline{Q}) uC2,1(Q)C(Q) 且满足 L u = f ≥ 0 Lu=f\geq0 Lu=f0, 则 u u u Q ‾ \overline{Q} Q上的最小值必在 Q Q Q 的抛物边界 Γ \Gamma Γ 上达到,即
min ⁡ Q ‾ u ( x , t ) = min ⁡ Γ u ( x , t ) \mathop{\min}\limits_{\overline{Q}}u(x,t)=\mathop{\min}\limits_{\Gamma}u(x,t) Qminu(x,t)=Γminu(x,t)

如果 L u = 0 Lu=0 Lu=0 u u u Q ‾ \overline{Q} Q上的最大值与最小值都必在抛物边界 Γ \Gamma Γ 上达到

证明过程:

只需令 v = − u v=-u v=u,则 L v = f ≤ 0 Lv=f\leq0 Lv=f0,由上面的定理得

max ⁡ Q ‾ v ( x , t ) = max ⁡ Γ v ( x , t ) \mathop{\max}\limits_{\overline{Q}}v(x,t)=\mathop{\max}\limits_{\Gamma}v(x,t) Qmaxv(x,t)=Γmaxv(x,t)

也即

max ⁡ Q ‾ ( − u ) = max ⁡ Γ ( − u ) \mathop{\max}\limits_{\overline{Q}} (-u)=\mathop{\max}\limits_{\Gamma} (-u) Qmax(u)=Γmax(u)

等式 max ⁡ Q ‾ ( − u ) = max ⁡ Γ ( − u ) \mathop{\max}\limits_{\overline{Q}} (-u) = \mathop{\max}\limits_{\Gamma} (-u) Qmax(u)=Γmax(u) 可以转换为 u u u 的最小值的表达式。在数学上,函数 − u -u u 的最大值等价于 u u u 的最小值,这是因为对于任意两个数 a a a b b b,如果 a ≤ b a\leq b ab,那么 − a ≥ − b -a \geq -b ab

所以,当 − u -u u 在某个集合上取得最大值,实际上就意味着 u u u 在同一个集合上取得了最小值。

因此,我们可以将上述等式重新表达为关于 u u u 的最小值:
min ⁡ Q ‾ u = min ⁡ Γ u \mathop{\min}\limits_{\overline{Q}} u = \mathop{\min}\limits_{\Gamma} u Qminu=Γminu

热传导方程定解问题最大模能量模估计的证明

下面这两个题目在证明过程中对于等式/不等式左端含有 u x 2 u_x^2 ux2 的项都是不需要进行处理,因为待证结论中左端是有 u x 2 u_x^2 ux2 的,直接保留就行。

题目一

Q = ( 0 , l ) × ( 0 , T ] Q=(0,l)\times(0,T] Q=(0,l)×(0,T],设 u ( x , t ) ∈ C 1 , 0 ( Q ‾ ) ∩ C 2 , 1 ( Q ) u(x,t)\in C^{1,0}(\overline{Q})\cap C^{2,1}(Q) u(x,t)C1,0(Q)C2,1(Q),且满足以下定解问题

{ u t − u x x = f ( x , t ) ,     x , t ∈ Q u ( x , 0 ) = φ ( x ) ,     0 ≤ x ≤ l u x ( 0 , t ) = 0 , u x ( l , t ) + β u ( l , t ) = 0 ,     0 ≤ t ≤ T \left\{ \begin{aligned} &u_{t} -u_{xx} = f(x,t), \ \ \ x,t\in Q \\ &u(x,0) = \varphi(x), \ \ \ 0\leq x\leq l \\ &u_{x}(0,t) = 0, u_{x}(l,t)+\beta u(l,t)=0, \ \ \ 0\leq t\leq T\\ \end{aligned} \right. utuxx=f(x,t),   x,tQu(x,0)=φ(x),   0xlux(0,t)=0,ux(l,t)+βu(l,t)=0,   0tT其中 β ≥ 0 \beta\geq0 β0,请证明 s u p 0 ≤ t ≤ T ∫ 0 l u 2 ( x , t ) d x + ∫ 0 T ∫ 0 l ( u x ( x , t ) ) 2 d x d t ≤ M ( ∫ 0 l φ 2 ( x ) d x ) + ∫ 0 T ∫ 0 l f 2 ( x , t ) d x d t ) \mathop{sup}\limits_{ 0\leq t\leq T}\int_{0}^{l}u^2(x,t)dx+\int_{0}^{T}\int_{0}^{l}(u_{x}(x,t))^2dxdt\leq M(\int_{0}^{l}\varphi^2(x)dx)+\int_{0}^{T}\int_{0}^{l}f^2(x,t)dxdt) 0tTsup0lu2(x,t)dx+0T0l(ux(x,t))2dxdtM(0lφ2(x)dx)+0T0lf2(x,t)dxdt)其中 M M M 仅依赖于 T T T

证明过程:

  1. 方程 u t − u x x = f u_{t}-u_{xx}=f utuxx=f 两端同乘 u u u 并在区域 Q τ = ( 0 , l ) × ( 0 , τ ) Q_\tau=(0,l)\times(0,\tau) Qτ=(0,l)×(0,τ) 上积分得

∬ Q τ u u t d x d t − ∬ Q τ u u x x d x d t = ∬ Q τ f ⋅ u d x d t \iint_{Q_{\tau}}uu_tdxdt-\iint_{Q_{\tau}}uu_{xx}dxdt=\iint_{Q_{\tau}}f\cdot u dxdt QτuutdxdtQτuuxxdxdt=Qτfudxdt

利用替换技巧
u u t = 1 2 ⋅ 2 u ⋅ u t = 1 2 ( u 2 ) t uu_t=\frac{1}{2}\cdot 2u\cdot u_t =\frac{1}{2}(u^2)_t uut=212uut=21(u2)t u u x x = ( u u x ) x − u x 2 = u x 2 + u u x x − u x 2 uu_{xx}=(uu_x)_x-u_x^2=u_x^2+uu_{xx}-u_x^2 uuxx=(uux)xux2=ux2+uuxxux2得等式左端为 ∫ 0 l ∫ 0 τ 1 2 ( u 2 ) t d t d x − ∫ 0 τ ∫ 0 l ( u u x ) x d x d t + ∬ Q τ u x 2 d x d t \int_{0}^{l}\int_{0}^{\tau}\frac{1}{2}(u^2)_tdtdx-\int_{0}^{\tau}\int_{0}^{l}(uu_x)_xdxdt+\iint_{Q_{\tau}}u_{x}^2dxdt 0l0τ21(u2)tdtdx0τ0l(uux)xdxdt+Qτux2dxdt

  1. 对不同项分别在 t t t x x x 上积分
    \newline
    ∫ 0 τ ∫ 0 l 1 2 ( u 2 ) t d x d t \int_{0}^{\tau}\int_{0}^{l}\frac{1}{2}(u^2)_tdxdt 0τ0l21(u2)tdxdt t t t 上进行积分得到 ∫ 0 l 1 2 u 2 ( x , τ ) − 1 2 u 2 ( x , 0 ) d x \int_{0}^{l}\frac{1}{2}u^2(x,\tau)-\frac{1}{2}u^2(x,0)dx 0l21u2(x,τ)21u2(x,0)dx
    \newline
    用题目条件 u ( x , 0 ) = φ ( x ) u(x,0)=\varphi(x) u(x,0)=φ(x) 替换得 ∫ 0 l ∫ 0 τ 1 2 ( u 2 ) t d t d x = 1 2 ∫ 0 l [ u 2 ( x , τ ) − φ 2 ( x ) ] d x \int_{0}^{l}\int_{0}^{\tau}\frac{1}{2}(u^2)_tdtdx = \frac{1}{2}\int_{0}^{l}[u^2(x,\tau)-\varphi^2(x)]dx 0l0τ21(u2)tdtdx=210l[u2(x,τ)φ2(x)]dx
    \newline
    ∫ 0 τ ∫ 0 l ( u u x ) x d x d t \int_{0}^{\tau}\int_{0}^{l}(uu_x)_xdxdt 0τ0l(uux)xdxdt x x x 上进行积分得到 ∫ 0 τ ∫ 0 l ( u u x ) x d x d t \int_{0}^{\tau}\int_{0}^{l}(uu_x)_xdxdt 0τ0l(uux)xdxdt
    \newline
    = ∫ 0 τ [ u ( l , t ) u x ( l , t ) − u ( 0 , t ) u x ( 0 , t ) ] d t =\int_{0}^{\tau}[u(l,t)u_x(l,t)-u(0,t)u_x(0,t)]dt =0τ[u(l,t)ux(l,t)u(0,t)ux(0,t)]dt
    \newline
    由题目给的条件 u x ( 0 , t ) = 0 u_{x}(0,t) = 0 ux(0,t)=0 所以
    \newline
    ∫ 0 τ ∫ 0 l ( u u x ) x d x d t \int_{0}^{\tau}\int_{0}^{l}(uu_x)_xdxdt 0τ0l(uux)xdxdt = ∫ 0 τ u ( l , t ) u x ( l , t ) d t =\int_{0}^{\tau}u(l,t)u_x(l,t)dt =0τu(l,t)ux(l,t)dt

  2. 确定 u ( l , t ) u x ( l , t ) u(l,t)u_x(l,t) u(l,t)ux(l,t)
    \newline
    所以现在需要确定 u ( l , t ) u x ( l , t ) u(l,t)u_x(l,t) u(l,t)ux(l,t),这时利用题目给的条件 u x ( l , t ) + β u ( l , t ) = 0 u_{x}(l,t)+\beta u(l,t)=0 ux(l,t)+βu(l,t)=0对其平方得 u x 2 ( l , t ) + β 2 u 2 ( l , t ) + 2 β u ( l , t ) u x ( l , t ) = 0 u^{2}_{x}(l,t)+\beta^2 u^2(l,t)+2\beta u(l,t)u_x(l,t)=0 ux2(l,t)+β2u2(l,t)+2βu(l,t)ux(l,t)=0移项得 2 β u ( l , t ) u x ( l , t ) = − ( u x 2 ( l , t ) + β 2 u 2 ( l , t ) ) 2\beta u(l,t)u_x(l,t)=-(u^{2}_{x}(l,t)+\beta^2 u^2(l,t)) 2βu(l,t)ux(l,t)=(ux2(l,t)+β2u2(l,t))两边同时除以 2 β 2\beta 2β u ( l , t ) u x ( l , t ) = − 1 2 ( β u 2 ( l , t ) + 1 β u x 2 ( l , t ) ) u(l,t)u_x(l,t)=-\frac{1}{2}(\beta u^2(l,t)+\frac{1}{\beta}u^{2}_{x}(l,t)) u(l,t)ux(l,t)=21(βu2(l,t)+β1ux2(l,t))那么现在 1. 1. 1. 最后得到的等式 ∫ 0 τ ∫ 0 l 1 2 ( u 2 ) t d x d t − ∫ 0 τ ∫ 0 l ( u u x ) x d x d t + ∬ Q τ u x 2 d x d t = ∬ Q τ u f d x d t \int_{0}^{\tau}\int_{0}^{l}\frac{1}{2}(u^2)_tdxdt-\int_{0}^{\tau}\int_{0}^{l}(uu_x)_xdxdt+\iint_{Q_{\tau}}u_{x}^2dxdt = \iint_{Q_{\tau}}ufdxdt 0τ0l21(u2)tdxdt0τ0l(uux)xdxdt+Qτux2dxdt=Qτufdxdt 2. 2. 2. 3. 3. 3. 中的等价替换带进等式左端,右端使用 C a u c h y Cauchy Cauchy 不等式 a b ≤ 1 2 ( a 2 + b 2 ) ab\leq \frac{1}{2}(a^2+b^2) ab21(a2+b2) 得到 1 2 ∫ 0 l [ u 2 ( x , τ ) − φ 2 ( x ) ] d x + 1 2 ∫ 0 τ [ β u 2 ( l , t ) + 1 β u x 2 ( l , t ) ] d t + ∬ Q τ u x 2 d x d t ≤ 1 2 ∬ Q τ u 2 d x d t + 1 2 ∬ Q τ f 2 d x d t \frac{1}{2}\int_{0}^{l}[u^2(x,\tau)-\varphi^2(x)]dx+\frac{1}{2}\int_{0}^{\tau}[\beta u^2(l,t)+\frac{1}{\beta}u^{2}_{x}(l,t)]dt+\iint_{Q_{\tau}}u^{2}_{x}dxdt\leq \frac{1}{2}\iint_{Q_{\tau}}u^2dxdt+\frac{1}{2}\iint_{Q_{\tau}}f^2dxdt 210l[u2(x,τ)φ2(x)]dx+210τ[βu2(l,t)+β1ux2(l,t)]dt+Qτux2dxdt21Qτu2dxdt+21Qτf2dxdt将上面不等式两边同乘 2 2 2 并将 φ 2 ( x ) \varphi^2(x) φ2(x) 移项得到 ∫ 0 l u 2 ( x , τ ) d x + ∫ 0 τ [ β u 2 ( l , t ) + 1 β u x 2 ( l , t ) ] d t + 2 ∬ Q τ u x 2 d x d t ≤ ∫ 0 l φ 2 ( x ) d x + ∬ Q τ u 2 d x d t + ∬ Q τ f 2 d x d t \int_{0}^{l}u^2(x,\tau)dx+\int_{0}^{\tau}[\beta u^2(l,t)+\frac{1}{\beta}u^{2}_{x}(l,t)]dt+2\iint_{Q_{\tau}}u^{2}_{x}dxdt\leq \int_{0}^{l}\varphi^2(x)dx+\iint_{Q_{\tau}}u^2dxdt+\iint_{Q_{\tau}}f^2dxdt 0lu2(x,τ)dx+0τ[βu2(l,t)+β1ux2(l,t)]dt+2Qτux2dxdt0lφ2(x)dx+Qτu2dxdt+Qτf2dxdt

  3. 对上面不等式构造 G r o n w a l l Gronwall Gronwall 不等式
    \newline
    G ( τ ) = ∬ Q τ u 2 d x d t ,   F ( τ ) = ∫ 0 l φ 2 ( x ) d x + ∬ Q τ f 2 d x d t G(\tau)=\iint_{Q_{\tau}}u^2dxdt,\ F(\tau)=\int_{0}^{l}\varphi^2(x)dx+\iint_{Q_{\tau}}f^2dxdt G(τ)=Qτu2dxdt, F(τ)=0lφ2(x)dx+Qτf2dxdt,那么此时
    \newline
    d G ( τ ) d τ = ∫ 0 l u 2 ( x , τ ) d x − ∫ 0 l u 2 ( x , 0 ) d x \frac{dG(\tau)}{d\tau}=\int_{0}^{l}u^2(x,\tau)dx-\int_{0}^{l}u^2(x,0)dx dτdG(τ)=0lu2(x,τ)dx0lu2(x,0)dx
    \newline
    = ∫ 0 l u 2 ( x , τ ) d x − ∫ 0 l φ 2 ( x ) d x =\int_{0}^{l}u^2(x,\tau)dx-\int_{0}^{l}\varphi^2(x)dx =0lu2(x,τ)dx0lφ2(x)dx,也就意味着 ∫ 0 l u 2 ( x , τ ) d x = d G ( τ ) d τ + ∫ 0 l φ 2 ( x ) d x \int_{0}^{l}u^2(x,\tau)dx=\frac{dG(\tau)}{d\tau}+\int_{0}^{l}\varphi^2(x)dx 0lu2(x,τ)dx=dτdG(τ)+0lφ2(x)dx
    \newline
    d G ( τ ) d τ ≤ ∫ 0 l u 2 ( x , τ ) d x \frac{dG(\tau)}{d\tau}\leq \int_{0}^{l}u^2(x,\tau)dx dτdG(τ)0lu2(x,τ)dx
    \newline
    那么也就是说上面的不等式可以写成
    d G ( τ ) d τ + ∫ 0 τ [ β u 2 ( l , t ) + 1 β u x 2 ( l , t ) ] d t + 2 ∬ Q τ u x 2 d x d t ≤ ∫ 0 l φ 2 ( x ) d x + ∬ Q τ u 2 d x d t + ∬ Q τ f 2 d x d t \frac{dG(\tau)}{d\tau}+\int_{0}^{\tau}[\beta u^2(l,t)+\frac{1}{\beta}u^{2}_{x}(l,t)]dt+2\iint_{Q_{\tau}}u^{2}_{x}dxdt\leq \int_{0}^{l}\varphi^2(x)dx+\iint_{Q_{\tau}}u^2dxdt+\iint_{Q_{\tau}}f^2dxdt dτdG(τ)+0τ[βu2(l,t)+β1ux2(l,t)]dt+2Qτux2dxdt0lφ2(x)dx+Qτu2dxdt+Qτf2dxdt而这个不等式左边除了 d G ( τ ) d τ \frac{dG(\tau)}{d\tau} dτdG(τ) 之外的另外 2 项都是非负项 ( β > 0 ) (\beta>0) (β>0,可放缩得:
    d G ( τ ) d τ ≤ ∫ 0 l φ 2 ( x ) d x + ∬ Q τ u 2 d x d t + ∬ Q τ f 2 d x d t \frac{dG(\tau)}{d\tau}\leq \int_{0}^{l}\varphi^2(x)dx+\iint_{Q_{\tau}}u^2dxdt+\iint_{Q_{\tau}}f^2dxdt dτdG(τ)0lφ2(x)dx+Qτu2dxdt+Qτf2dxdt
    \newline
    那么此时满足 d G ( τ ) d τ ≤ G ( τ ) + F ( τ ) \frac{dG(\tau)}{d\tau}\leq G(\tau)+F(\tau) dτdG(τ)G(τ)+F(τ) Gronwall \text{Gronwall} Gronwall 不等式可得, ∃ M 1 > 0 ,   s . t . \exists M_1>0,\ s.t. M1>0, s.t. G ( τ ) ≤ M 1 F ( τ ) G(\tau)\leq M_1F(\tau) G(τ)M1F(τ) M = M 1 + 1 M=M_1+1 M=M1+1,那么上面这个不等式的右端可以写成 ∫ 0 l φ 2 ( x ) d x + ∬ Q τ u 2 d x d t + ∬ Q τ f 2 d x d t = G ( τ ) + F ( τ ) ≤ M 1 F ( τ ) + F ( τ ) = ( M 1 + 1 ) F ( τ ) = M F ( τ )      = M ( ∫ 0 l φ 2 ( x ) d x + ∬ Q τ f 2 d x d t ) \int_{0}^{l}\varphi^2(x)dx+\iint_{Q_{\tau}}u^2dxdt+\iint_{Q_{\tau}}f^2dxdt=G(\tau)+F(\tau)\leq M_1F(\tau)+F(\tau)=(M_1+1)F(\tau)=MF(\tau)\quad\quad\quad \ \ \ \ \newline=M(\int_{0}^{l}\varphi^2(x)dx+\iint_{Q_{\tau}}f^2dxdt) 0lφ2(x)dx+Qτu2dxdt+Qτf2dxdt=G(τ)+F(τ)M1F(τ)+F(τ)=(M1+1)F(τ)=MF(τ)    =M(0lφ2(x)dx+Qτf2dxdt)回看 3. 3. 3. 中得到的这个不等式: ∫ 0 l u 2 ( x , τ ) d x + ∫ 0 τ [ β u 2 ( l , t ) + 1 β u x 2 ( l , t ) ] d t + 2 ∬ Q τ u x 2 d x d t ≤ ∫ 0 l φ 2 ( x ) d x + ∬ Q τ u 2 d x d t + ∬ Q τ f 2 d x d t \int_{0}^{l}u^2(x,\tau)dx+\int_{0}^{\tau}[\beta u^2(l,t)+\frac{1}{\beta}u^{2}_{x}(l,t)]dt+2\iint_{Q_{\tau}}u^{2}_{x}dxdt\leq \int_{0}^{l}\varphi^2(x)dx+\iint_{Q_{\tau}}u^2dxdt+\iint_{Q_{\tau}}f^2dxdt 0lu2(x,τ)dx+0τ[βu2(l,t)+β1ux2(l,t)]dt+2Qτux2dxdt0lφ2(x)dx+Qτu2dxdt+Qτf2dxdt
    那么可以缩小左端(去除非负项),同时放大右端,得到如下不等式:
    ∫ 0 l u 2 ( x , τ ) d x + ∬ Q τ u x 2 d x d t ≤ M ( ∫ 0 l φ 2 ( x ) d x + ∬ Q τ f 2 d x d t ) \int_{0}^{l}u^2(x,\tau)dx+\iint_{Q_{\tau}}u^{2}_{x}dxdt\leq M(\int_{0}^{l}\varphi^2(x)dx+\iint_{Q_{\tau}}f^2dxdt) 0lu2(x,τ)dx+Qτux2dxdtM(0lφ2(x)dx+Qτf2dxdt)那么这个不等式左端的两项都非负,所以各自都单独小于不等式右端,
    \newline
    也即:
    ∫ 0 l u 2 ( x , τ ) d x ≤ M ( ∫ 0 l φ 2 ( x ) d x + ∬ Q τ f 2 d x d t ) \int_{0}^{l}u^2(x,\tau)dx\leq M(\int_{0}^{l}\varphi^2(x)dx+\iint_{Q_{\tau}}f^2dxdt) 0lu2(x,τ)dxM(0lφ2(x)dx+Qτf2dxdt) ∬ Q τ u x 2 d x d t ≤ M ( ∫ 0 l φ 2 ( x ) d x + ∬ Q τ f 2 d x d t ) \iint_{Q_{\tau}}u^{2}_{x}dxdt\leq M(\int_{0}^{l}\varphi^2(x)dx+\iint_{Q_{\tau}}f^2dxdt) Qτux2dxdtM(0lφ2(x)dx+Qτf2dxdt)这两个不等式两端分别关于 τ \tau τ 取上确界,再相加,得到待证结论
    s u p 0 ≤ t ≤ T ∫ 0 l u 2 ( x , t ) d x + ∫ 0 T ∫ 0 l ( u x ( x , t ) ) 2 d x d t ≤ M ( ∫ 0 l φ 2 ( x ) d x ) + ∫ 0 T ∫ 0 l f 2 ( x , t ) d x d t ) \mathop{sup}\limits_{ 0\leq t\leq T}\int_{0}^{l}u^2(x,t)dx+\int_{0}^{T}\int_{0}^{l}(u_{x}(x,t))^2dxdt\leq M(\int_{0}^{l}\varphi^2(x)dx)+\int_{0}^{T}\int_{0}^{l}f^2(x,t)dxdt) 0tTsup0lu2(x,t)dx+0T0l(ux(x,t))2dxdtM(0lφ2(x)dx)+0T0lf2(x,t)dxdt)

题目二

Q = ( 0 , l ) × ( 0 , T ] Q=(0,l)\times(0,T] Q=(0,l)×(0,T],设 u ( x , t ) ∈ C 1 , 0 ( Q ‾ ) ∩ C 2 , 1 ( Q ) u(x,t)\in C^{1,0}(\overline{Q})\cap C^{2,1}(Q) u(x,t)C1,0(Q)C2,1(Q),且满足以下定解问题

{ u t − a 2 u x x = f ( x , t ) ,     x , t ∈ Q u ( x , 0 ) = φ ( x ) ,     0 ≤ x ≤ l − u x + α u ∣ x = 0 = 0 , u x + β u ∣ x = l = 0 ,     0 ≤ t ≤ T \left\{ \begin{aligned} &u_{t} -a^2u_{xx} = f(x,t), \ \ \ x,t\in Q \\ &u(x,0) = \varphi(x), \ \ \ 0\leq x\leq l \\ &-u_x+\alpha u|_{x=0}=0,u_x+\beta u|_{x=l}=0, \ \ \ 0\leq t\leq T\\ \end{aligned} \right. uta2uxx=f(x,t),   x,tQu(x,0)=φ(x),   0xlux+αux=0=0,ux+βux=l=0,   0tT其中 α ≥ 0 , β ≥ 0 \alpha\geq0,\beta\geq0 α0,β0,请证明 s u p 0 ≤ t ≤ T ∫ 0 l u 2 ( x , t ) d x + ∫ 0 T ∫ 0 l ( u x ( x , t ) ) 2 d x d t ≤ M ( ∫ 0 l φ 2 ( x ) d x ) + ∫ 0 T ∫ 0 l f 2 ( x , t ) d x d t ) \mathop{sup}\limits_{ 0\leq t\leq T}\int_{0}^{l}u^2(x,t)dx+\int_{0}^{T}\int_{0}^{l}(u_{x}(x,t))^2dxdt\leq M(\int_{0}^{l}\varphi^2(x)dx)+\int_{0}^{T}\int_{0}^{l}f^2(x,t)dxdt) 0tTsup0lu2(x,t)dx+0T0l(ux(x,t))2dxdtM(0lφ2(x)dx)+0T0lf2(x,t)dxdt)其中 M M M 仅依赖于 T , a T,a T,a

证明过程:

  1. 方程 u t − a 2 u x x = f u_{t}-a^2u_{xx}=f uta2uxx=f 两端同乘 u u u 并在区域 Q τ = ( 0 , l ) × ( 0 , τ ) Q_\tau=(0,l)\times(0,\tau) Qτ=(0,l)×(0,τ) 上积分得 ∬ Q τ u u t d x d t − ∬ Q τ a 2 u u x x d x d t = ∬ Q τ f ⋅ u d x d t \iint_{Q_{\tau}}uu_tdxdt-\iint_{Q_{\tau}}a^2uu_{xx}dxdt=\iint_{Q_{\tau}}f\cdot u dxdt QτuutdxdtQτa2uuxxdxdt=Qτfudxdt利用替换技巧 u u t = 1 2 ⋅ 2 u ⋅ u t = 1 2 ( u 2 ) t uu_t=\frac{1}{2}\cdot 2u\cdot u_t =\frac{1}{2}(u^2)_t uut=212uut=21(u2)t u u x x = ( u u x ) x − u x 2 = u x 2 + u u x x − u x 2 uu_{xx}=(uu_x)_x-u_x^2=u_x^2+uu_{xx}-u_x^2 uuxx=(uux)xux2=ux2+uuxxux2得等式左端为 ∫ 0 τ ∫ 0 l 1 2 ( u 2 ) t d x d t − a 2 ∫ 0 τ ∫ 0 l ( u u x ) x d x d t + a 2 ∬ Q τ u x 2 d x d t \int_{0}^{\tau}\int_{0}^{l}\frac{1}{2}(u^2)_tdxdt-a^2\int_{0}^{\tau}\int_{0}^{l}(uu_x)_xdxdt+a^2\iint_{Q_{\tau}}u_{x}^2dxdt 0τ0l21(u2)tdxdta20τ0l(uux)xdxdt+a2Qτux2dxdt

  2. 对不同项分别在 t t t x x x 上积分
    \newline
    ∫ 0 τ ∫ 0 l 1 2 ( u 2 ) t d x d t \int_{0}^{\tau}\int_{0}^{l}\frac{1}{2}(u^2)_tdxdt 0τ0l21(u2)tdxdt t t t 上进行积分得到 ∫ 0 l 1 2 u 2 ( x , τ ) − 1 2 u 2 ( x , 0 ) d x \int_{0}^{l}\frac{1}{2}u^2(x,\tau)-\frac{1}{2}u^2(x,0)dx 0l21u2(x,τ)21u2(x,0)dx
    \newline
    用题目条件 u ( x , 0 ) = φ ( x ) u(x,0)=\varphi(x) u(x,0)=φ(x) 替换得 ∫ 0 τ ∫ 0 l 1 2 ( u 2 ) t d x d t = 1 2 ∫ 0 l [ u 2 ( x , τ ) − φ 2 ( x ) ] d x \int_{0}^{\tau}\int_{0}^{l}\frac{1}{2}(u^2)_tdxdt = \frac{1}{2}\int_{0}^{l}[u^2(x,\tau)-\varphi^2(x)]dx 0τ0l21(u2)tdxdt=210l[u2(x,τ)φ2(x)]dx
    a 2 ∫ 0 τ ∫ 0 l ( u u x ) x d x d t a^2\int_{0}^{\tau}\int_{0}^{l}(uu_x)_xdxdt a20τ0l(uux)xdxdt x x x 上进行积分得到 a 2 ∫ 0 τ ∫ 0 l ( u u x ) x d x d t a^2\int_{0}^{\tau}\int_{0}^{l}(uu_x)_xdxdt a20τ0l(uux)xdxdt
    \newline
    = a 2 ∫ 0 τ [ u ( l , t ) u x ( l , t ) − u ( 0 , t ) u x ( 0 , t ) ] d t =a^2\int_{0}^{\tau}[u(l,t)u_x(l,t)-u(0,t)u_x(0,t)]dt =a20τ[u(l,t)ux(l,t)u(0,t)ux(0,t)]dt
    \newline
    那么此时 1. 1. 1. 中最后的等式可替换为:
    1 2 ∫ 0 l [ u 2 ( x , τ ) − φ 2 ( x ) ] d x − a 2 ∫ 0 τ [ u ( l , t ) u x ( l , t ) − u ( 0 , t ) u x ( 0 , t ) ] d t + a 2 ∫ 0 τ ∫ 0 l ( u x ) 2 d x d t = ∫ 0 τ ∫ 0 l f ⋅ u d x d t \frac{1}{2}\int_{0}^{l}[u^2(x,\tau)-\varphi^2(x)]dx-a^2\int_{0}^{\tau}[u(l,t)u_x(l,t)-u(0,t)u_x(0,t)]dt+a^2\int_{0}^{\tau}\int_{0}^{l}(u_x)^2dxdt=\int_{0}^{\tau}\int_{0}^{l}f\cdot udxdt 210l[u2(x,τ)φ2(x)]dxa20τ[u(l,t)ux(l,t)u(0,t)ux(0,t)]dt+a20τ0l(ux)2dxdt=0τ0lfudxdt

  3. 运用题目给的边界条件想办法将 u ( l , t ) u x ( l , t ) u(l,t)u_x(l,t) u(l,t)ux(l,t) u ( 0 , t ) u x ( 0 , t ) u(0,t)u_x(0,t) u(0,t)ux(0,t) 进行替换
    − u x + α u ∣ x = 0 = 0 -u_x+\alpha u|_{x=0}=0 ux+αux=0=0 u x + β u ∣ x = l = 0 u_x+\beta u|_{x=l}=0 ux+βux=l=0两边乘 u u u − u ( 0 , t ) u x ( 0 , t ) + α u 2 ( 0 , t ) = 0 -u(0,t)u_x(0,t)+\alpha u^2(0,t)=0 u(0,t)ux(0,t)+αu2(0,t)=0 u ( l , t ) u x ( l , t ) + β u 2 ( l , t ) = 0 u(l,t)u_x(l,t)+\beta u^2(l,t)=0 u(l,t)ux(l,t)+βu2(l,t)=0也即 u ( l , t ) u x ( l , t ) = − β u 2 ( l , t ) u(l,t)u_x(l,t)=-\beta u^2(l,t) u(l,t)ux(l,t)=βu2(l,t) − u ( 0 , t ) u x ( 0 , t ) = − α u 2 ( 0 , t ) -u(0,t)u_x(0,t)=-\alpha u^2(0,t) u(0,t)ux(0,t)=αu2(0,t)那么这一项 − a 2 ∫ 0 τ [ u ( l , t ) u x ( l , t ) − u ( 0 , t ) u x ( 0 , t ) ] d t = a 2 ∫ 0 τ β u 2 ( l , t ) + α u 2 ( 0 , t ) d t -a^2\int_{0}^{\tau}[u(l,t)u_x(l,t)-u(0,t)u_x(0,t)]dt=a^2\int_{0}^{\tau}\beta u^2(l,t)+\alpha u^2(0,t)dt a20τ[u(l,t)ux(l,t)u(0,t)ux(0,t)]dt=a20τβu2(l,t)+αu2(0,t)dt那么 2. 2. 2. 中最后的等式可替换为 1 2 ∫ 0 l [ u 2 ( x , τ ) − φ 2 ( x ) ] d x + a 2 ∫ 0 τ β u 2 ( l , t ) + α u 2 ( 0 , t ) d t + a 2 ∫ 0 τ ∫ 0 l ( u x ) 2 d x d t = ∫ 0 τ ∫ 0 l f ⋅ u d x d t \frac{1}{2}\int_{0}^{l}[u^2(x,\tau)-\varphi^2(x)]dx+a^2\int_{0}^{\tau}\beta u^2(l,t)+\alpha u^2(0,t)dt+a^2\int_{0}^{\tau}\int_{0}^{l}(u_x)^2dxdt=\int_{0}^{\tau}\int_{0}^{l}f\cdot udxdt 210l[u2(x,τ)φ2(x)]dx+a20τβu2(l,t)+αu2(0,t)dt+a20τ0l(ux)2dxdt=0τ0lfudxdt
    舍去这个等式左端的非负项 a 2 ∫ 0 τ β u 2 ( l , t ) + α u 2 ( 0 , t ) d t a^2\int_{0}^{\tau}\beta u^2(l,t)+\alpha u^2(0,t)dt a20τβu2(l,t)+αu2(0,t)dt 并同乘 2 2 2 φ ( x ) \varphi(x) φ(x) 移项可得到不等式 ∫ 0 l u 2 ( x , τ ) d x + 2 a 2 ∫ 0 τ ∫ 0 l ( u x ) 2 d x d t ≤ ∫ 0 l φ 2 ( x ) d x + 2 ∫ 0 τ ∫ 0 l f ⋅ u d x d t \int_{0}^{l}u^2(x,\tau)dx+2a^2\int_{0}^{\tau}\int_{0}^{l}(u_x)^2dxdt\leq \int_{0}^{l}\varphi^2(x)dx+2\int_{0}^{\tau}\int_{0}^{l}f\cdot udxdt 0lu2(x,τ)dx+2a20τ0l(ux)2dxdt0lφ2(x)dx+20τ0lfudxdt对上面这个不等式右端的 2 ∫ 0 τ ∫ 0 l f ⋅ u d x d t 2\int_{0}^{\tau}\int_{0}^{l}f\cdot udxdt 20τ0lfudxdt 应用 C a u c h y Cauchy Cauchy 不等式得   ∫ 0 l u 2 ( x , τ ) d x + 2 a 2 ∫ 0 τ ∫ 0 l ( u x ) 2 d x d t ≤ ∫ 0 l φ 2 ( x ) d x + ∫ 0 τ ∫ 0 l f 2 d x d t + ∫ 0 τ ∫ 0 l u 2 d x d t \ \int_{0}^{l}u^2(x,\tau)dx+2a^2\int_{0}^{\tau}\int_{0}^{l}(u_x)^2dxdt\leq \int_{0}^{l}\varphi^2(x)dx+\int_{0}^{\tau}\int_{0}^{l}f^2dxdt+\int_{0}^{\tau}\int_{0}^{l}u^2dxdt  0lu2(x,τ)dx+2a20τ0l(ux)2dxdt0lφ2(x)dx+0τ0lf2dxdt+0τ0lu2dxdt
    将上面这个不等式记为 ( ∗ * )
    \newline
    ( ∗ * )左端舍去非负的第一项并除以 2 a 2 2a^2 2a2 ∫ 0 τ ∫ 0 l ( u x ) 2 d x d t ≤ 1 2 a 2 ( ∫ 0 l φ 2 ( x ) d x + ∫ 0 τ ∫ 0 l f 2 d x d t + ∫ 0 τ ∫ 0 l u 2 d x d t )    ( 1 ) \int_{0}^{\tau}\int_{0}^{l}(u_x)^2dxdt\leq \frac{1}{2a^2}(\int_{0}^{l}\varphi^2(x)dx+\int_{0}^{\tau}\int_{0}^{l}f^2dxdt+\int_{0}^{\tau}\int_{0}^{l}u^2dxdt) \ \ (1) 0τ0l(ux)2dxdt2a21(0lφ2(x)dx+0τ0lf2dxdt+0τ0lu2dxdt)  (1)( ∗ * )左端舍去非负的第二项得   ∫ 0 l u 2 ( x , τ ) d x ≤ ∫ 0 l φ 2 ( x ) d x + ∫ 0 τ ∫ 0 l f 2 d x d t + ∫ 0 τ ∫ 0 l u 2 d x d t    ( 2 ) \ \int_{0}^{l}u^2(x,\tau)dx\leq \int_{0}^{l}\varphi^2(x)dx+\int_{0}^{\tau}\int_{0}^{l}f^2dxdt+\int_{0}^{\tau}\int_{0}^{l}u^2dxdt\ \ (2)  0lu2(x,τ)dx0lφ2(x)dx+0τ0lf2dxdt+0τ0lu2dxdt  (2)
    G ( τ ) = ∫ 0 τ ∫ 0 l u 2 d x d t G(\tau)=\int_{0}^{\tau}\int_{0}^{l}u^2dxdt G(τ)=0τ0lu2dxdt F ( τ ) = ∫ 0 l φ 2 ( x ) d x + ∫ 0 τ ∫ 0 l f 2 d x d t F(\tau)=\int_{0}^{l}\varphi^2(x)dx+\int_{0}^{\tau}\int_{0}^{l}f^2dxdt F(τ)=0lφ2(x)dx+0τ0lf2dxdt
    \newline
    那么此时, d G ( τ ) d τ = ∫ 0 l u 2 ( x , τ ) d x \frac{dG(\tau)}{d\tau}=\int_{0}^{l}u^2(x,\tau)dx dτdG(τ)=0lu2(x,τ)dx 可验证 ( 2 ) (2) (2) 满足(此时 C = 1 C=1 C=1) d G ( τ ) d τ ≤ G ( τ ) + F ( τ ) \frac{dG(\tau)}{d\tau}\leq G(\tau)+F(\tau) dτdG(τ)G(τ)+F(τ) Gronwall \text{Gronwall} Gronwall 不等式可得到: ∫ 0 τ ∫ 0 l u 2 d x d t ≤ ( e τ − 1 ) ( ∫ 0 l φ 2 ( x ) d x + ∫ 0 τ ∫ 0 l f 2 d x d t )    ( 3 ) \int_{0}^{\tau}\int_{0}^{l}u^2dxdt\leq(e^{\tau}-1)(\int_{0}^{l}\varphi^2(x)dx+\int_{0}^{\tau}\int_{0}^{l}f^2dxdt)\ \ (3) 0τ0lu2dxdt(eτ1)(0lφ2(x)dx+0τ0lf2dxdt)  (3) ∫ 0 l u 2 ( x , τ ) d x ≤ e τ ( ∫ 0 l φ 2 ( x ) d x + ∫ 0 τ ∫ 0 l f 2 d x d t )    ( 4 ) \int_{0}^{l}u^2(x,\tau)dx\leq e^{\tau}(\int_{0}^{l}\varphi^2(x)dx+\int_{0}^{\tau}\int_{0}^{l}f^2dxdt)\ \ (4) 0lu2(x,τ)dxeτ(0lφ2(x)dx+0τ0lf2dxdt)  (4)这里 C = 1 , d G ( τ ) d τ = ∫ 0 l u 2 ( x , τ ) d x C=1,\frac{dG(\tau)}{d\tau}=\int_{0}^{l}u^2(x,\tau)dx C=1,dτdG(τ)=0lu2(x,τ)dx
    \newline
    ( 4 ) (4) (4) 式两边取上确界得到: s u p 0 ≤ τ ≤ T ∫ 0 l u 2 ( x , τ ) d x ≤ e T ( ∫ 0 l φ 2 ( x ) d x + ∫ 0 T ∫ 0 l f 2 d x d t )    ( 5 ) \mathop{sup}\limits_{ 0\leq \tau\leq T}\int_{0}^{l}u^2(x,\tau)dx\leq e^{T}(\int_{0}^{l}\varphi^2(x)dx+\int_{0}^{T}\int_{0}^{l}f^2dxdt) \ \ (5) 0τTsup0lu2(x,τ)dxeT(0lφ2(x)dx+0T0lf2dxdt)  (5)注意 ( 4 ) (4) (4) 式右端的 τ \tau τ 变成 T T T
    \newline
    ( 1 ) (1) (1) 式右边的 ∫ 0 τ ∫ 0 l u 2 d x d t \int_{0}^{\tau}\int_{0}^{l}u^2dxdt 0τ0lu2dxdt 利用 ( 3 ) (3) (3) 式进行放大得 ∫ 0 τ ∫ 0 l u x 2 d x d t ≤ 1 2 a 2 ( ∫ 0 l φ 2 ( x ) d x + ∫ 0 τ ∫ 0 l f 2 d x d t + ∫ 0 τ ∫ 0 l u 2 d x d t ) ≤ 1 2 a 2 [ ∫ 0 l φ 2 ( x ) d x + ∫ 0 τ ∫ 0 l f 2 d x d t + ( e τ − 1 ) ( ∫ 0 l φ 2 ( x ) d x + ∫ 0 τ ∫ 0 l f 2 d x d t ) ] \int_{0}^{\tau}\int_{0}^{l}u_{x}^2dxdt\leq \frac{1}{2a^2}(\int_{0}^{l}\varphi^2(x)dx+\int_{0}^{\tau}\int_{0}^{l}f^2dxdt+\int_{0}^{\tau}\int_{0}^{l}u^2dxdt)\leq \frac{1}{2a^2}[\int_{0}^{l}\varphi^2(x)dx+\int_{0}^{\tau}\int_{0}^{l}f^2dxdt+(e^\tau-1)(\int_{0}^{l}\varphi^2(x)dx+\int_{0}^{\tau}\int_{0}^{l}f^2dxdt)] 0τ0lux2dxdt2a21(0lφ2(x)dx+0τ0lf2dxdt+0τ0lu2dxdt)2a21[0lφ2(x)dx+0τ0lf2dxdt+(eτ1)(0lφ2(x)dx+0τ0lf2dxdt)] = e τ 2 a 2 ( ∫ 0 l φ 2 ( x ) d x + ∫ 0 τ ∫ 0 l f 2 d x d t ) =\frac{e^\tau}{2a^2}(\int_{0}^{l}\varphi^2(x)dx+\int_{0}^{\tau}\int_{0}^{l}f^2dxdt) =2a2eτ(0lφ2(x)dx+0τ0lf2dxdt)也即 ∫ 0 τ ∫ 0 l u x 2 d x d t ≤ e τ 2 a 2 ( ∫ 0 l φ 2 ( x ) d x + ∫ 0 τ ∫ 0 l f 2 d x d t ) \int_{0}^{\tau}\int_{0}^{l}u_{x}^2dxdt\leq\frac{e^\tau}{2a^2}(\int_{0}^{l}\varphi^2(x)dx+\int_{0}^{\tau}\int_{0}^{l}f^2dxdt) 0τ0lux2dxdt2a2eτ(0lφ2(x)dx+0τ0lf2dxdt)两边取上确界得 ∫ 0 T ∫ 0 l u x 2 d x d t ≤ e T 2 a 2 ( ∫ 0 l φ 2 ( x ) d x + ∫ 0 T ∫ 0 l f 2 d x d t )    ( 6 ) \int_{0}^{T}\int_{0}^{l}u_{x}^2dxdt\leq\frac{e^T}{2a^2}(\int_{0}^{l}\varphi^2(x)dx+\int_{0}^{T}\int_{0}^{l}f^2dxdt) \ \ (6) 0T0lux2dxdt2a2eT(0lφ2(x)dx+0T0lf2dxdt)  (6) ( 5 ) (5) (5) ( 6 ) (6) (6) 两个不等式相加得证

  • 13
    点赞
  • 21
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值