ApplSci_2024 Camouflaged Object Detection That Does Not Require Additional Priors

动机

Camouflaged object detection (COD) 是一项具有挑战性的任务,因为伪装物体与其背景有着显著的相似性,导致检测算法效率低下。传统的COD方法通常依赖于额外的先验知识来指导模型训练,但这种先验知识的获取成本高昂,并且通常已经嵌入在原始图像中却未被充分利用。为了应对这些问题,本文提出了一种不依赖额外先验知识的新型伪装线索引导网络(CCGNet),该网络通过自适应方法动态提取伪装物体的线索来提高检测性能。

主要贡献

  1. 提出CCGNet:针对COD问题,提出了一种新型伪装线索引导网络CCGNet。该网络通过自适应特征融合模块(AFFM)有效提取和整合图像中的内在语义信息,增强模型对伪装物体整体结构的理解。
  2. 引入两个关键模块:引入前景分离模块(FSM)边缘细化模块(ERM),利用AFFM生成的伪装线索(其实就是编码器提取的最终特征)深入挖掘图像中的相关语义细节,并改进伪装物体的边缘表示。
  3. 实验验证:在三个传统基准数据集上进行了广泛的实验,结果表明该模型在所有四个指标上均优于最先进的模型。

创新点

  1. 自适应特征融合:提出了自适应特征融合模块(AFFM),通过监控模型对伪装物体的学习状态,动态选择和融合特征,生成伪装线索。这些线索包含了模型各层所学习到的有用信息,用于纠正和补充不同层次的特征,指导模型关注图像的整体结构。
  2. 前景分离与边缘细化前景分离模块(FSM)利用伪装线索增强各层特征,改进模型对伪装物体整体结构的学习,解决像素分布不均的问题;边缘细化模块(ERM)通过结合上下文信息进一步细化模型的边缘预测,提供更精确的边缘表示。
  3. 无先验知识指导:与许多依赖于额外先验信息的COD算法不同,本文提出的方法仅利用从原始图像中提取的线索进行模型训练,避免了获取先验知识的高昂成本和额外依赖。

结论

本文提出的CCGNet通过自适应融合多层特征,生成伪装线索,结合前景分离和边缘细化模块,显著提升了伪装物体检测的性能。在三个基准数据集上的实验结果表明,该方法在各项指标上均优于当前最先进的方法,验证了其有效性和优越性。

摘要

在本文中,作者引入了一种新的伪装线索制导网络(CCGNet),用于伪装目标检测,不依赖于额外的先验知识(比如边缘特征信息)。具体来说,使用自适应方法来跟踪模型相对于伪装对象的学习状态,并从原始图像中动态提取伪装对象的线索。此外,我们还引入了前景分离模块和边缘细化模块,以有效地利用这些伪装线索,帮助模型完全分离伪装对象并实现精确的边缘预测。

作者所提到的伪装目标检测的Additional Priors是指什么?如何理解作者所述的adaptive approach中的adaptive?

在伪装目标检测中,Additional Priors额外先验知识是指在模型训练过程中,除了原始图像之外,额外提供的辅助信息。这些辅助信息通常包括边界信息、分割标签、物体的形状和结构信息等。其目的是通过额外的指导信息来提高模型对伪装目标的检测精度。然而,获取这些额外先验知识往往需要大量的人工标注和资源投入。

在本文中,作者提到的adaptive approach(自适应方法)中的adaptive(自适应的),主要指模型在训练过程中能够根据学习状态动态地调整和提取伪装目标的特征信息。具体来说,作者提出了一个自适应特征融合模块(Adaptive Feature Fusion Module,AFFM),这个模块可以根据模型对伪装目标的当前理解状态,动态选择和融合不同层次的特征,以生成伪装线索(camouflage cues)。这些伪装线索包含了模型从图像中学到的有用信息,能够帮助模型更好地分离伪装目标,并在没有额外先验知识的情况下,提升检测性能。

这种自适应的方法不仅能够捕捉到多层次的图像特征,还能根据模型的学习状态不断优化特征提取和融合过程,确保模型始终能够聚焦于图像中的关键信息,从而提高伪装目标检测的效果。

相关工作

2.2. Camouflaged Object Detection

近年来,伪装目标检测(Camouflaged Object Detection,COD)的方法可以分为两类:利用先验信息的方法和不依赖先验信息的方法。

利用额外先验信息的方法
  1. Lv et al. 提出了一个联合框架,用于定位、分割和排序伪装目标。他们在训练过程中加入了额外的排序信息,从而改进了伪装的理解 。
  2. Zhai et al. 提出了互相图学习(mutual graph learning)的方法,该方法通过将图像分解为任务特定的特征图来实现精确的定位和边界优化 。
  3. Sun et al. 探索了利用物体相关的边缘语义作为模型学习的附加指导,从而促进生成强调物体边缘的特征 。
  4. He et al. 提出了使用边缘似然图来指导伪装目标特征的融合,以提高检测性能 。
  5. Kajiura et al. 使用伪边缘生成器预测边缘标签,有助于准确的边缘预测 。
  6. Zhu et al. 提出了利用Canny边缘检测和Conedge技术辅助模型训练 。
  7. Li et al. 提出了联合训练伪装物体和显著性物体的方法,以增强模型检测能力 。
  8. Yang et al. 结合了贝叶斯学习和基于Transformer的推理优势,提出了不确定性引导的随机遮罩作为先验知识来辅助模型训练 。
  9. Bian et al. 利用边缘信息评估物体的伪装程度 。
  10. Song et al. 提出了选择某些结构特征,如光照、纹理方向和边缘,并使用加权结构纹理相似性评估伪装纹理的影响 。

然而,先验信息通常昂贵且不实际

不依赖额外先验信息的方法
  1. Mei et al. 提出了一个定位模块、聚焦模块和新颖的干扰挖掘策略,以增强模型性能 。
  2. Fan et al. 受自然界中捕食者行为的启发,提出了一个搜索和识别网络,包含目标定位和识别步骤 。
  3. Sun et al. 提出了一个注意力引导融合模块,整合多层次特征并结合上下文信息进行更有效的预测 。
  4. Zhang et al. 提出了一种模型,包含捕猎的两个过程,即感知和认知机制。设计了专门的模块以选择性和注意地聚合初始特征 。
  5. Jia et al. 提出了一种方法,模型关注固定和边缘区域,使用注意力引导的采样器逐步放大目标区域 。
  6. Ren et al. 引入了在深度卷积神经网络中构建多个纹理感知细化模块的概念,以学习能够突出伪装物体与背景之间微妙纹理差异的特征 。
  7. Dong et al. 将大接收野和有效特征融合集成到统一框架中,以增强模型检测伪装目标的能力 。

实际上,不依赖先验信息的算法通常利用各种技术来聚合不同感受野大小的特征,以获得更好的检测结果。然而,这些算法常常效率低下,并且在有效提取图像信息方面遇到限制。相比之下,本文提出的CCGNet能够有效引导模型训练过程,通过自动从图像中提取有价值的特征生成伪装线索,无需外部先验知识。

提出的方法

3.1 Overall architecture

CCGNet的体系结构如图 2 所示,它由三个模块组成:自适应特征融合模块(AFFM)、前景分离模块(FSM)和边缘细化模块(ERM),分别在3.2节、3.3节和3.4节中描述。在提取多尺度特征时,采用Res2Net-50[41]架构作为主干(默认5个stages )。本文从特征层次的最后四层得到多尺度特征。最接近输入的层被排除在外,因为它包含过多的噪声并且有一个小的接受野。请注意,下面的图2中没有描述最接近输入的层。

在这里插入图片描述
该框架由自适应特征融合模块(AFFM)、前景分离模块(FSM)和边缘细化模块(ERM)三个部分组成。AFFM通过多层特征的自适应融合来深入研究伪装对象的整体结构,从而生成与模型学习状态一致的定制伪装线索(CC),在这方面起着关键作用。前景分离模块(FSM)和边缘细化模块(ERM)结合伪装线索,显著增强了特征表示。

作者提出的模型整体结构图可以认为是编码器-解码器结构

是的,作者提出的模型整体结构图可以认为是编码器-解码器结构。下面详细解释编码器和解码器模块:

编码器部分

编码器部分的主要任务是从输入图像中提取多尺度、多层次的特征。对应到图中的模块是:

  1. 特征提取层(f1, f2, f3, f4)

    • 这些层通过卷积操作对输入图像进行特征提取,逐层提取高层次特征。这些层可以看作是编码器的主体部分。
  2. 自适应特征融合模块(AFFM)

    • 这个模块负责对从各层提取的特征进行自适应融合,生成伪装线索(CC)。AFFM通过深层注意力机制(DLA)和空间通道注意力机制(SCA)对多层特征进行融合,并生成伪装线索(CC),这些伪装线索包含了丰富的上下文信息和结构信息。

解码器部分

解码器部分的主要任务是利用编码器提取的特征进行目标的分割和边缘细化。对应到图中的模块是:

  1. 前景分离模块(FSM)

    • 该模块利用伪装线索(CC)和各层特征,进行前景特征的分离和增强。FSM对每一层特征进行通道注意力(CA)处理,生成细化特征(RF)。
  2. 边缘细化模块(ERM)

    • 该模块对细化特征(RF)进行进一步处理,通过融合上下文信息,实现更精细的边缘预测。ERM通过学习同一层特征的不同分支之间的语义相关性,实现特征的过滤和细化
  3. 多尺度输出(O1, O2, O3, O4)

    • 解码器的输出包括多个尺度的预测结果(O1, O2, O3, O4),这些输出通过损失函数与真实标签(GT)进行对比,以指导模型的训练。

总结

  • 编码器:特征提取层(f1, f2, f3, f4)和自适应特征融合模块(AFFM)。
  • 解码器:前景分离模块(FSM)、边缘细化模块(ERM)以及多尺度输出(O1, O2, O3, O4)。

通过这种编码器-解码器结构,模型能够有效地提取和融合多层次特征,实现对伪装目标的精确检测和边缘细化。

3.2. Adaptive Feature Fusion Module (AFFM)

Background and Challenges:

伪装目标检测中,边界先验排序先验通常用于辅助目标检测模型。然而,基本的检测信息主要存在于图像特征中。由于伪装图像中前景和背景特征的固有相似性,以及模型训练过程中可能丢失的关键信息,可靠特征信息的有效利用成为以往模型的一大挑战。额外先验知识的整合虽然能显著提升检测性能,但依赖人类识别,导致劳动成本增加,并可能影响算法的适应性和有效性

AFFM的提出:

为解决上述问题,本文提出了自适应特征融合模块(Adaptive Feature Fusion Module, AFFM)。该模块根据模型对伪装目标的学习状态动态融合多层特征,提取有价值的检测知识,最终生成全面的伪装线索(Camouflage Cues, CC)。这些伪装线索涵盖了模型学到的所有知识,有助于伪装目标检测,并增强模型对伪装目标整体结构的理解。

具体实现:

  1. 卷积操作与特征调整:

    • 对所有输入特征应用卷积操作,然后调整所有输入特征的尺寸。高层特征 { f i } i = 2 4 \{f_i\}^4_{i=2} { fi}i=24调整为尺寸为 { x i } i = 1 3 ∈ R H 8 × W 8 × 256 \{x_i\}^3_{i=1}\in\mathbb{R}^{\frac{H}{8}\times\frac{W}{8}\times 256} { xi}i=13R8H×8W×256,低层特征 f 1 f_1 f1调整为尺寸为 x l ∈ R H 8 × W 8 × 128 x_l \in\mathbb{R}^{\frac{H}{8}\times\frac{W}{8}\times 128} xlR8H×8W×128
  2. 深层注意力机制(DLA):

    • 使用深层注意力机制(Deep Layer Attention, DLA)增强模型对伪装目标整体结构的理解。分析各特征层之间的相互作用,根据获取特征的重要性分配权重,通过加权过滤提取与伪装目标相关的特征。
    • DLA 的计算公式如下:
      w i , j = S o f t m a x ( ϕ ( x ) i ⋅ ( ϕ ( x ) ) j T ) , i , j ∈ { 1 , 2 , 3 } w_{i,j} = Softmax(ϕ(x)_i · (ϕ(x))^T_j), i, j ∈ \{1, 2, 3\} wi,j=Softmax(ϕ(x)i(ϕ(x))jT),i,j{ 1,2,3} x j = β ∑ i = 1 3 w i , j x i + x j , x i / x j ∈ { x 1 , x 2 , x 3 } x_j = β \sum_{i=1}^{3} w_{i,j} x_i + x_j, x_i/x_j ∈ \{x_1, x_2, x_3\} xj=βi=13wi,jxi+xj,xi/xj{ x1,x2,x3} x h = [ x 1 ; x 2 ; x 3 ] x_h = [x_1; x_2; x_3] xh=[x1;x2
智能网联汽车的安全员高级考试涉及多个方面的专业知识,包括但不限于自动驾驶技术原理、车辆传感器融合、网络安全防护以及法律法规等内容。以下是针对该主题的些核心知识点解析: ### 关于智能网联车安全员高级考试的核心内容 #### 1. 自动驾驶分级标准 国际自动机工程师学会(SAE International)定义了六个级别的自动驾驶等级,从L0到L5[^1]。其中,L3及以上级别需要安全员具备更高的应急处理能力。 #### 2. 车辆感知系统的组成与功能 智能网联车通常配备多种传感器,如激光雷达、毫米波雷达、摄像头和超声波传感器等。这些设备协同工作以实现环境感知、障碍物检测等功能[^2]。 #### 3. 数据通信与网络安全 智能网联车依赖V2X(Vehicle-to-Everything)技术进行数据交换,在此过程中需防范潜在的网络攻击风险,例如中间人攻击或恶意软件入侵[^3]。 #### 4. 法律法规要求 不同国家和地区对于无人驾驶测试及运营有着严格的规定,考生应熟悉当地交通法典中有关自动化驾驶部分的具体条款[^4]。 ```python # 示例代码:模拟简单决策逻辑 def decide_action(sensor_data): if sensor_data['obstacle'] and not sensor_data['emergency']: return 'slow_down' elif sensor_data['pedestrian_crossing']: return 'stop_and_yield' else: return 'continue_driving' example_input = {'obstacle': True, 'emergency': False, 'pedestrian_crossing': False} action = decide_action(example_input) print(f"Action to take: {action}") ``` 需要注意的是,“橙点同学”作为特定平台上的学习资源名称,并不提供官方认证的标准答案集;建议通过正规渠道获取教材并参加培训课程来准备此类资格认证考试。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值