李宏毅深度学习笔记(七)初探深度学习

在这里插入图片描述

Neural Network

如图所示,下图前端的1和-1为输入层, y 1 y_1 y1 y 2 y_2 y2为输出层,中间的蓝色圆圈、红色圆圈和绿色圆圈为隐藏层。以输入层到第一层隐藏层的计算为例,如果第一层隐藏层的函数为Sigmoid函数,则当以第一层隐藏层作为输入时输入向量的计算如下:
在这里插入图片描述
推广到一般情况:
在这里插入图片描述
在做多分类时通常会在输出层加上一个Softmax:
在这里插入图片描述
举一个数字识别的例子:
在这里插入图片描述在这里插入图片描述
在这样的多层神经网络里面已经限定了输入的维数和输出的维数,我们所需要做的就是设计隐藏层的层数和每一层神经元的个数还有每一层的函数。

Goodness of function

先拿一个训练样本来举例:
在这里插入图片描述
Cross Entropy.这里用了交叉熵损失函数来衡量模型的好坏。
当然真正的训练集肯定不止一个样本:
在这里插入图片描述
这时我们就要用整个的损失函数了,对损失函数进行求解找到使损失函数最小化的参数 θ ∗ \theta^* θ
最后用梯度下降的方法来求参数 θ ∗ \theta^* θ即可。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

comli_cn

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值