如何搭建LSTM(pytorch版)

一 、单向LSTM

0.导入包

import torch

1.rnn = torch.nn.LSTM(input_size,hidden_size,num_layers)

rnn = torch.nn.LSTM(10, 20, 2)  #(input_size,hidden_size,num_layers)

括号里面第一个参数input_size是输入向量的长度,第二个参数hidden_size是隐藏层向量的维度,第三个参数num_layers代表循环层的数量。

第三个参数num_layers不太好理解,可以通过下图理解一下:
在这里插入图片描述
一般num_layers默认为1,当num_layers为2时就是上图画的这样了,将第一层输出的h_t作为第二层的输入,这是在空间上展开的样子,而我们经常能看到的是在时间上展开的样子,如下图(num_layers=1时在时间轴上展开的样子):
在这里插入图片描述
因此我们对LSTM应用反向传播算法时既要计算误差沿时间的传播又要计算误差沿层的传播,而普通的全连接神经网络在做反向传播时只需要计算误差沿层的传播即可,如下图
在这里插入图片描述
所以可以将LSTM与全连接神经网络做个类比:
在这里插入图片描述我们去掉具体的一根根连线可以看到LSTM与全连接神经网络是十分类似的,LSTM只是对普通的隐藏层进行了功能拓展。

2.input = torch.randn(seq_len, batch, input_size)

input = torch.randn(5, 3, 10)#(seq_len, batch, input_size)

生成一个形状 5 ∗ 3 ∗ 10 5*3*10 5310的张量,张量里面的元素是服从标准正态分布的随机数。
张量的通俗理解见链接: link.
第二个参数batch表示将整个输入序列分成了3个小batch(即进行批量化),第一个参数seq_len表示每个小batch需要几个时间步进行处理,第三个参数input_size是输入向量的维度。
batch参考.
这里为什么要就行批量化呢,是为了在使用梯度下降的时候方便一些,既不用每处理一个输入的最小单元就更新参数,也不用等全部输入处理完再更新所有参数。这里可以参考一下小批量梯度下降。

3.两个初始化

h0 = torch.randn(2, 3, 20) #(num_layers,batch,output_size)
c0 = torch.randn(2, 3, 20) #(num_layers,batch,output_size)

4.前向计算

output, (hn, cn) = rnn(input, (h0, c0))

将输入input,和初始的h0,c0放到rnn中就会进行前向计算,算出输出output和hn, cn,当然这里的rnn已经是被实例化的LSTM(见第一个标题)。

在这里插入图片描述

二 、双向LSTM

import torch
rnn = torch.nn.LSTM(input_size=10, hidden_size=20, num_layers=2,bidirectional=True)#(input_size,hidden_size,num_layers)
input = torch.randn(5, 3, 10)#(seq_len, batch, input_size)
h0 = torch.randn(4, 3, 20) #(num_layers,batch,output_size)
c0 = torch.randn(4, 3, 20) #(num_layers,batch,output_size)
output, (hn, cn) = rnn(input, (h0, c0))

只要在torch.nn.LSTM()的括号中加入bidirectional=True就开启了双向LSTM。双向LSTM与单向LSTM的区别在于单向LSTM在计算一个时间步的相关数值时只可以用到前面几步的数值,而双向LSTM既能用到前面几步的数值又能用到后面几步的数值。

比如说在补充一句话的时候:
“我要去__。”
这时用单向LSTM可以推测出空格里面应该填一个地名。但如果残句变为:
“我要__学校。”
这是只根据“我要”这两个字很难推出空格里面内容,但是如果结合“学校”就可以准确推测了。这就是双向LSTM的应用场景了。

在这里插入图片描述 LSTM的输入输出格式.

### 配置BiLSTM模型的运行环境 为了成功搭建和配置BiLSTM模型的运行环境,需要考虑以下几个关键部分: #### 1. Python本的选择 推荐使用Python 3.7或更高本,因为大多数深度学习框架(如TensorFlow、PyTorch)都支持这些本,并且能够提供更好的兼容性和功能扩展。 #### 2. 安装必要的库 以下是安装所需的主要库及其作用: - **NumPy**: 提供高效的数组操作能力。 - **Pandas**: 数据处理和分析的核心工具。 - **Matplotlib/Seaborn**: 可视化数据分析结果。 - **Scikit-Learn**: 进行数据预处理和模型评估。 - **Keras/TensorFlow** 或 **PyTorch**: 实现BiLSTM模型训练的基础框架。 可以通过以下命令安装上述库: ```bash pip install numpy pandas matplotlib seaborn scikit-learn tensorflow pytorch ``` 对于具体实现中的参数调整,例如隐藏单元数量和层数设置[^3],可以根据实际应用场景的需求进行优化。 #### 3. GPU加速的支持 如果硬件条件允许,建议启用GPU来加速模型训练过程。这通常通过NVIDIA CUDA Toolkit和cuDNN库完成。确保已正确安装CUDA驱动程序并验证其可用性。 #### 4. 示例代码展示 下面是一个简单的BiLSTM模型定义与训练流程的例子,基于Keras API编写: ```python from keras.models import Sequential from keras.layers import Dense, Embedding, Bidirectional, LSTM model = Sequential() model.add(Embedding(input_dim=10000, output_dim=128)) model.add(Bidirectional(LSTM(units=64))) model.add(Dense(1, activation='sigmoid')) model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy']) model.summary() ``` 此代码片段展示了如何创建一个双向循环神经网络架构,并指定Adam作为优化器以及二元交叉熵损失函数用于分类任务。 #### 5. 改进方向 除了基本的BiLSTM结构外,还可以尝试引入更多先进技术以进一步提升性能,比如加入注意力机制或者与其他类型的神经网络相结合形成混合模型[^4]。
评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

comli_cn

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值