YOLOV3+ASFF(Learning Spatial Fusion for Single-Shot Object Detection)训练踩坑记

文章:https://arxiv.org/pdf/1911.09516v2.pdf

github:https://github.com/ruinmessi/ASFF

博客分析:https://blog.csdn.net/weixin_42096202/article/details/103293579

前沿:

下图是ASFF文章的效果,与yolov3对比,yolov3+ASFF 320的尺寸与416的yolov3,在速度保持差不多的情况下,精度有大幅度的提高;

一、编译DCN

注意:原作者的实现,只支持pytorch1.0以上的,否则则编译会不成功的(我试过其他版本,一直报错);

       . /make.sh

如果使用的python3 注意要把sh文件中的python改成python3;

错误:如果出现下图错误前面有的时候是需要sudo权限的,

解决办法:在pyhton3前面加sudo; 

出现下图所示,则安装成功;

二、下载安装:

    在github下载解压后,下载一些必要的安装包

apex, numpy, opencv, tqdm, pyyaml, matplotlib, scikit-image,pycocotools。。。。

其他的用pip3安装即可,只有apex需要自己安装;

  安装编译apex:

git clone https://github.com/NVIDIA/apex.git   ----安装下载
cd apex
python3 setup.py install --cpp_ext --cuda_ext  ------编译

注意:git会很慢,慢慢等吧哈哈哈

错误:Cuda extensions are being compiled with a version of Cuda that does not...

解决办法:出现这种情况,是pytorch版本问题,如果你不想改版本,就牺牲一些功能好了, 

sudo cd apex
sudo nano setup.py

 进去以后,将52行注释,加上pass,重新运行即可解决错误;

if (bare_metal_major != torch_binary_major) or (bare_metal_minor != torch_binary_minor):
    	pass
        # raise RuntimeError("Cuda extensions are being compiled with a version of Cuda that does " +
        #                    "not match the version used to compile Pytorch binaries.  " +
        #                    "Pytorch binaries were compiled with Cuda {}.\n".format(torch.version.cuda) +
        #                    "In some cases, a minor-version mismatch will not cause later errors:  " +
        #                    "https://github.com/NVIDIA/apex/pull/323#discussion_r287021798.  "
        #                    "You can try commenting out this check (at your own risk).")

 出现一下情况就表面安装成功了;

 三、跑demo程序

下载权重:https://pan.baidu.com/s/1d9hOQBj20HCy51qWbonxMQ(这是我用的)

  还有其他的权重:

python3 demo.py -i /path/to/your/image \
--cfg config/yolov3_baseline.cfg -d COCO \
--checkpoint /path/to/you/weights --half --asff --rfb -s 608

参数解释:
-i, --img: 图片path.
--cfg: config files.
-d: choose datasets, COCO or VOC.
-c, --checkpoint:预训练模型或者训练好的模型.
--half: FP16 testing.
-s: 评估的图片尺寸, from 320 to 608 as in YOLOv3.

四、制作数据集

  支持两种数据格式,VOC与COCO,按照标准数据集格式制作即可;

  然后把自己path的在main.py文件相应位置更改;

五、训练

      下载预训练模型:

      darknet53预训练模型:https://pan.baidu.com/s/19PaXl6p9vXHG2ZuGqtfLOg

      MobileNetV2预训练模型:https://pan.baidu.com/s/12eScI6YNBvkVX0286cMEZA

python3 -m torch.distributed.launch --nproc_per_node=10 
--master_port=${RANDOM+10000} main.py 
--cfg config/yolov3_baseline.cfg -d COCO 
--tfboard --distributed --ngpu 10 
--checkpoint weights/darknet53_feature_mx.pth 
--start_epoch 0 --half --log_dir log/COCO -s 608 

如果不用分布式训练,则命令为:

python3 main.py 
--cfg config/yolov3_baseline.cfg -d COCO 
--tfboard --distributed --ngpu 10 
--checkpoint weights/darknet53_feature_mx.pth 
--start_epoch 0 --half --log_dir log/COCO -s 608 

参数解释:

  • --cfg: 配置文件.

  • --tfboard: 是否使用tensorboard,写了就表示使用.

  • --distributed: 是否使用分布式训练(我们仅通过分布式训练测试代码)

  • -d: 选择什么数据集格式, COCO or VOC.

  • --ngpu:  GPUs数量.

  • -c, --checkpoint: 预训练权重

  • --start_epoch: 从哪开始重新训练.

  • --half: FP16 training.

  • --log_dir: tensorboard生成的文件存放path.

  • -s: 评估的图片尺寸, from 320 to 608 as in YOLOv3

  • 如要训练YOLOv3 带 ASFF or ASFF*, 需要使用一下命令:

  • python3 -m torch.distributed.launch --nproc_per_node=10 --master_port=${RANDOM+10000} main.py \
    --cfg config/yolov3_baseline.cfg -d COCO --tfboard --distributed --ngpu 10 \
    --checkpoint weights/darknet53_feature_mx.pth --start_epoch 0 --half --asff --rfb --dropblock \
    --log_dir log/COCO_ASFF -s 608 

    参数解释:

  • --vis: Visualization of ASFF.
  • --testset: evaluate on COCO test-dev.
  • -s: evaluation image size.

训练时候出现:RuntimeError: one of the variables needed for gradient computation has been modified by an inplace operation: [torch.cuda.FloatTensor [2, 4, 76, 76, 25]], which is output 0 of CloneBackward

解决办法:我试了下,我用torch1.2就会报错,但是换成1.1就正常训练,那只能换成1.1了;

评论 35
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值