一篇文章帮你搞懂「估值」

本文介绍了基金投资中的估值概念,包括市盈率(PE)、盈利收益率(EP)、市净率(PB)、股息率和净资产收益率(ROE)等常见估值方法,并阐述了如何利用估值判断基金的买入和卖出时机。同时,提醒投资者注意估值的局限性,不适合所有行业和股票。建议在低估值时买入,中性或高估值时卖出,但要结合具体行业和公司状况进行决策。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

微信公众号:超漫时光
关注可了解更多的基金知识及投资技巧。问题或建议,请公众号留言;
如果本篇文章对你有帮助,欢迎点击在看

前言

今天换一个排版风格,Markdown是最适合程序员写文章的,没有之一。本篇文章昨晚完成大纲,今天上午断断续续地写完了。周末没有更新,该休息的时候要好好休息。

估值的本质

在市场中,价值和价格就像人和狗的关系。一个人牵着狗溜达,狗一会跑到前面,一会跑到后面,一会又回到主人身边。这就是经济学上说的:价格围绕价值波动。

价格高于价值,就是高估。价格低于价值,就是低估。市场上大多数人亏钱的原因在于:高估的时候买入,当价格由高估向低估波动的时候,承受不了漫长的波动时间,选择了卖出。

价格我们可以看见,如何判断市场的真实价值,避免在高估的时候买入?那就需要用「估值」,它是一种研究方法,用来判断市场价格是高于或低于内在价值。

常见的估值方法

市盈率(PE)

市盈率(PE)= 公司市值(P)/ 公司盈利(E)= 股价 / 每股收益

例如:一家企业一年赚5亿,市值是100亿,那市盈率(PE)就是20倍。

市盈率细分为静态市盈率、滚动市盈率和动态市盈率,最具参考意义的是静态市盈率和滚动市盈率。

静态市盈率 = 市值 / 上一年度净利润 = 股价 / 上一年度每股收益

滚动市盈率 = 市值 / 过去四个季度净利润 = 股价 / 过去四个季度每股收益

动态市盈率 = 市值 / 下一年度净利润 = 股价 / 下一年度每股收益

一般来说,市盈率需要良好的流动性和稳定的利润,市盈率越低,代表越值得投资,但是不同行业的市盈率是不同的,仅看市盈率是不行的。

盈利收益率(EP)

盈利收益率(EP)=公司盈利(E)/公司市值(P)= 每股收益 / 股价

盈利收益率就是市盈率的倒数,是市盈率的一种变体,两者是可以相互转换的。

一般来说,企业的盈利收益率越高,说明公司的估值就越低,公司的价值就越有可能被低估。

市净率(PB)

市净率(PB)= 公司市值(P)/ 公司净资产(B)= 股价 / 每股净资产

市净率通常用来弥补市盈率的不足,比如亏损的企业,或业绩波动较大周期性企业,用市盈率很难反映出企业真实估值情况,这时就要用到市净率了。通常来说,PB越低,公司估值越低。

股息率

股息率=股息 / 市值

例如两支股票,A股价为10元,B股价为20元,两家公司同样发放每股0.5元股利,则A公司5%的股息率显然要比B公司2.5%诱人。

股息率是一年的总派息额与当时市价的比例,股息率估值法取决于其分红水平的高低和股价的高低,有一定的主观性和非标准性,需要结合其它指标一起用。

净资产收益率(ROE)

净资产收益率(ROE)= 净利润 / 净资产

净资产收益率是反映企业净资产创造净利润能力的,净资产收益率越高,说明企业投入净资产创造利润的能力越强,在使用该指标对企业进行考察时,需要注意考察企业的负债情况和总资产的经营情况。

如何用估值判断基金的买入、卖出点

股市是人性的博弈,我们不可能准确预测市场的顶部和底部,但是,我们可以在市场处于底部区域,估值低时买入,在市场处于顶部区域,估值高时卖出。

PE多少算低估值?用PE百分位估值衡量。

PE百分位,就是将历史上每一天的PE从小到大排序,将当前交易日的PE历史排名除以历史数据总数再乘以100%,就得出了历史百分位。

目前历史百分位方法大多应用于宽基指数和行业指数的估值,天天基金标准是历史百分位低于35%为低估,在35-70%区间为正常估值,高于70%为高估。蛋卷基金的标准是历史百分位低于30%,且PE<20为低估;百分位处于30-70%,且PE<20为正常估值;百分位高于70%,且PE>20为高估。低估数据表可以在各基金网站查到,差别不大。

基金的买入点:根据各大基金网站的低估值报表,在估值低的时候,使用定投的方式,在底部区域吸收足够多的筹码。

基金的卖出点:根据各大基金网站的低估值报表,在估值中性的时候,停止定投,在估值高的时候,分批次卖出,锁定收益。

估值的局限性

估值不是万能的,不是什么行业和股票都可以使用估值。估值主要适用于业绩相对稳定、周期性不强的行业,以及主要的宽基指数。

估值不适用于强周期行业,如传统能源、有色、钢铁、原材料等行业,银行业,保险业,房地产业。

估值不适用高发展、高成长的互联网行业,指不定哪天就破产了,记住需要业绩相对稳定。

估值不适用证券行业,这个行业股市越好,它的业绩越好,PE可能越低,股市越差,它的业绩越差,PE反而越高。

结束语

本文主要讲了为什么要用估值?估值是如何计算的?如何应用估值来买入、卖出基金?

最后说一下,估值只是工具,低估值买入,只能说买入的价格相对便宜,可能两、三年价格才会上涨,因此摆正心态,坚持低估值定投,耐心等待价格再次跑到价值前面的时候,再卖出才能获得回报。

点击查看原文链接,如果对你有帮助,请关注下方微信公众号,获取最新消息。

对于估值达到一亿美元的AI项目的核心代码和技术细节,通常涉及多个复杂的技术栈和领域专业知识。这类项目的实现不仅依赖于先进的算法模型,还涉及到大规模的数据处理能力、高效的计算资源管理以及特定应用场景下的优化。 ### 数据获取与预处理 为了构建如此规模的AI系统,数据源的选择至关重要。可以考虑多种类型的输入数据,包括但不限于行情数据、财务数据、宏观数据和舆情数据[^1]。这些数据可以通过网站下载、第三方API接口、专用客户端工具或是自动化网络爬虫等方式来收集。高质量的数据集是训练有效机器学习模型的基础。 ### 技术架构设计 针对大型AI系统的开发,推荐采用微服务架构模式,以便更好地支持分布式部署和服务间的解耦合。以下是几个关键技术组件: #### 云平台基础设施 利用主流云计算服务平台(如AWS, Azure, Google Cloud),能够提供弹性伸缩能力和按需付费机制,满足不同阶段对算力的需求变化。 #### 大数据分析框架 Hadoop/Spark等大数据分析引擎可以助处理海量历史记录,并从中提取有价值的信息用于后续建模过程。 #### 深度学习库 TensorFlow 或 PyTorch 是当前最流行的两个开源深度学习框架之一,在图像识别、自然语言处理等领域有着广泛的应用案例和支持社区。 ```python import tensorflow as tf from tensorflow.keras import layers, models # 定义简单的卷积神经网络结构作为示例 model = models.Sequential() model.add(layers.Conv2D(32, (3, 3), activation='relu', input_shape=(64, 64, 3))) model.add(layers.MaxPooling2D((2, 2))) model.add(layers.Flatten()) model.add(layers.Dense(64, activation='relu')) model.add(layers.Dense(1)) ``` 此段Python代码展示了如何创建一个基础版本的CNN(Convolutional Neural Network),适用于某些视觉任务中的特征提取工作。 ### 应用场景定制化调整 根据不同行业的具体需求特点,可能还需要引入额外的专业知识模块来进行针对性改进。例如金融行业可能会更加关注风险控制策略的设计;医疗健康方向则要注重隐私保护法规遵循等方面的要求。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值