目录
前言
在当今人工智能领域,知识抽取是一个至关重要的任务,但面临着少样本、零样本和终身学习等一系列挑战。本文将深入探讨少样本知识抽取、零样本知识抽取以及终身知识抽取的最新研究进展,涵盖了N-way-K-shot方法、原型网络、阅读理解等关键技术,旨在为读者提供全面的了解和洞察。
1 少样本知识抽取
1.1 N-way-K-shot方法
N-way-K-shot方法致力于解决少样本知识抽取的难题,通过在训练集中模拟少量样本的情境,旨在提高模型在少样本条件下的性能。其中,原型网络的引入是该方法的关键创新,其核心思想是通过学习类别的原型来进行关系抽取。在这种方法中,模型通过对少量样本进行有效学习,能够更好地推广到新的未见样本。然而,尽管在少样本场景下取得出色表现,N-way-K-shot方法仍然面临一些挑战。
1.2 原型网络
原型网络是基于实体关系的知识抽取方法,其主要目标是捕捉实体关系的原型以提高模型的泛化能力。在这种方法中,模型通过学习不同类别的原型,能够更好地理解关系的本质。尤其在少样本任务中,原型网络展现出较强的适应性,能够有效