如何在TensorFlow环境下安装object_detection

在anaconda环境下安装 google的object_detecthon,主要涉及Protoc的配置,object_detecthon环境变量配置等工作。

前期准备工作:

(1)在anaconda环境下安装配置好TensorFlow,并且设置好并进入TensorFlow环境。由于机器原因,我使用的CPU版的TensorFlow。

A:检查Python的支持:conda search --full --name python

B:安装TensorFlow环境(我使用的是最新版Python3.7):conda create –-name tensorflow python=3.7,根据提示进行安装对应的包。安装成功后会出现:éè£æ¿æ´»ç¯å¢提示。

C:使用命令activate TensorFlow激活TensorFlow工作环境。

D:安装TensorFlow-cpu版:pip install tensorflow,根据网络情况等待安装完成。

F:测试:打开anaconda  navigation,找到TensorFlow环境,并打开jupyter notebook(或者直接在命令行下输入jupyter notebook)启动编辑器,输入代码:

import tensorflow as tf
hello =tf.constant("Hello")
sess=tf.Session()
print(sess.run(hello))

运行成功,则tensorflow安装正确。

(2)通过git桌面版下载object_detecthon源码(https://github.com/tensorflow/models)。最好使用git桌面版下载,网页版下载超级慢。下载完成后,配置models的系统环境变量。环境变量名为PYTHONPATH,变量值根据自己的环境进行修改。

 

(3)下载并配置Protoc(https://github.com/protocolbuffers/protobuf/releases,同样建议用git桌面版下载)。然后将Protoc。exe放到C:\Windows\system32目录下,然后进入到models\research\目录下按住shif+鼠标右键,打开powershell窗口,运行:Get-ChildItem object_detection/protos/*.proto |Resolve-Path -Relative | %{protoc $_ --python_out=.}命令。运行成功,就会发现F:\OD\models\research\object_detection\protos文件增加.py文件。

(4)测试:详情见:https://blog.csdn.net/dy_guox/article/details/79081499

测试代码参考:https://blog.csdn.net/dy_guox/article/details/79111949

展开阅读全文

没有更多推荐了,返回首页