常见概率分布总结

本文总结了常见的概率分布,包括离散分布如伯努利、二项、几何、负二项、超几何和泊松分布,以及连续分布如均匀、指数、伽马和正态分布。详细介绍了每个分布的概率质量函数、累积分布函数及其性质,如期望和方差,并提到了指数族分布的重要角色。
摘要由CSDN通过智能技术生成

Discrete

Bernoulli distribution

  • pmf
    • f X ( x ) = P ( X = x ) = { ( 1 − p ) 1 − x p x for x = 0 or 1 0 otherwise f_X(x) = P(X= x) =\left\{\begin{aligned}(1-p)^{1-x}p^x & \quad \text{for x = 0 or 1}\\ 0 & \quad\text{otherwise}\end{aligned}\right. fX(x)=P(X=x)={ (1p)1xpx0for x = 0 or 1otherwise
  • expectation
    • E ( X ) = p E(X) = p E(X)=p

Binomial distribution

  • pmf
    • f X ( k ) = P ( X = k ) = { C n k p k ( 1 − p ) n − k for k=0,1,....,n 0 otherwise f_X(k) = P(X= k) =\left\{\begin{aligned}C_n^kp^k(1-p)^{n-k} & \quad \text{for k=0,1,....,n}\\ 0 & \quad\text{otherwise}\end{aligned}\right. fX(k)=P(X=k)={ Cnkpk(1p)nk0for k=0,1,....,notherwise
  • expectation
    • E ( X ) = n p E(X) = np E(X)=np
  • variance
    • v a r ( X ) = n p ( 1 − p ) var(X) = np(1-p) var(X)=np(1p)

Geometric distribution

  • pmf
    • f X ( k ) = P ( X = k ) = { p ( 1 − p ) k − 1 for k=1,2,3... 0 otherwise f_X(k) = P(X= k) =\left\{\begin{aligned}p(1-p)^{k-1} & \quad \text{for k=1,2,3...}\\ 0 & \quad\text{otherwise}\end{aligned}\right. fX(k)=P(X=k)={ p(1p)k10for k=1,2,3...otherwise
  • expectation
    • E ( X ) = 1 P E(X) = \frac{1}{P} E(X)=P1

Negative binomial distribution

  • The negative binomial distribution arises as a generalization of the geometric distribution.

  • Suppose that a sequence of independent trials each with probability of success p p p is performed until there are r r r successes in all.

    • so can be denote as p ⋅ C k − 1 r − 1 p r − 1 ( 1 − p ) ( k − 1 ) − ( r − 1 ) p \cdot C_{k-1}^{r-1} p^{r-1}(1-p)^{(k-1)-(r-1)} pCk1r1pr1(1p)(k1)(r1)
  • pmf

    • f X ( k ) =
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值