DeepSeek 学习路线图

以下是基于最新搜索结果整理的 DeepSeek 学习路线图,涵盖从基础到高级的系统学习路径,帮助你全面掌握 DeepSeek 的使用和应用开发。

一、基础知识与预备技能

1. 数学基础
  • 线性代数:掌握矩阵运算和向量空间,这是深度学习的核心。

  • 概率统计:理解贝叶斯理论和概率分布,用于模型训练和推理。

  • 微积分:了解优化算法中的梯度下降等概念。

2. 编程基础
  • Python:掌握 Python 编程,这是深度学习和 AI 开发的主要语言。

  • 常用库:熟悉 NumPy、Pandas、TensorFlow 和 PyTorch 等工具。

3. 机器学习基础
  • 监督学习:从线性回归、逻辑回归到神经网络。

  • 无监督学习:掌握聚类、降维等技术。

  • 深度学习架构:学习 CNN、RNN、Transformer 等架构。

二、DeepSeek 核心技术

1. 模型架构
  • Transformer:精读《Attention Is All You Need》论文,理解 Transformer 的工作原理。

  • 预训练与微调:学习 BERT、GPT 等模型的预训练和微调技术。

2. 分布式训练
  • 框架实战:使用 Horovod、DeepSpeed 等框架进行分布式训练。

  • 混合精度训练:掌握 FP8 等技术以提升训练效率。

三、实践与应用开发

1. API 和框架实战
  • LangChain 和 Hugging Face:使用这些工具开发智能问答系统、RAG 检索增强生成等应用。

  • 实战项目:开发如智能客服、内容创作等实际应用。

2. 垂直领域应用
  • 金融风控:构建风险评估、欺诈检测和信贷审批系统。

  • 医疗诊断:开发疾病预测、智能随访和个性化治疗方案。

  • 智能推荐:构建基于用户画像的推荐系统。

3. 多模态应用
  • 图像和视频处理:结合 Stable Diffusion 等模型进行多模态学习。

四、高级优化与部署

1. 模型优化
  • 参数调整:学习如何通过调整 temperaturetop_p 等参数优化生成效果。

  • 模型蒸馏:掌握精度无损压缩技术。

2. 部署与运维
  • 容器化技术:使用 Docker 和 Kubernetes 部署模型。

  • 私有化部署:为企业定制专属 AI 解决方案。

五、持续学习与拓展

1. 跟踪前沿技术
  • 论文阅读:关注 arXiv 和顶会论文(如 NeurIPS、ICML)。

  • 社区参与:加入 Hugging Face 社区、知乎专栏等。

2. 行业应用拓展
  • 金融领域:学习信用评分、反欺诈模型等应用。

  • 医疗领域:研究医学影像分析、智能诊断等。

六、学习资源推荐

1. 官方文档与教程
  • DeepSeek 官方文档:全面了解模型架构和 API 使用。

  • 清华大学《DeepSeek:从入门到精通》:涵盖基础知识、高级应用和实战案例。

2. 实战手册
  • 《DeepSeek 使用指令手册》:提供详细的操作指南和避坑建议。

  • 《DeepSeek 金融风控实战指南》:专注于金融风控领域的应用。

3. 在线课程
  • 吴恩达机器学习课程:适合初学者学习机器学习基础。

  • CS231n 深度学习课程:深入学习 CNN、RNN 等架构。

希望以上学习路线图能帮助你系统地掌握 DeepSeek 的使用和应用开发。如果需要更具体的资源链接或学习计划,可以进一步细化方向(如侧重训练、部署或应用开发)。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

CarlowZJ

我的文章对你有用的话,可以支持

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值