一、概念讲解
1. 什么是LoRA?
LoRA(Low-Rank Adaptation)是一种参数高效的微调方法,通过引入低秩矩阵分解,仅更新分解后的矩阵,而不是整个模型参数。这种方法在保持模型性能的同时,显著减少了训练参数量和计算资源需求。
2. LoRA的核心思想
-
低秩矩阵分解:将模型的权重矩阵分解为两个低秩矩阵的乘积,仅更新这两个低秩矩阵。
-
参数高效:通过减少需要更新的参数量,降低计算资源需求,同时保持模型性能。
3. LoRA的优势
-
计算效率:显著减少训练参数量,加速训练过程。
-
内存效率:减少内存占用,适合在资源受限的环境中运行。
-
性能保持:在保持高效的同时,LoRA能够维持与全精度微调相当的模型性能。
二、代码示例
以下是一个基于Hugging Face Transformers和PEFT库的LoRA微调示例,使用BERT模型进行情感分析任务: