LoRA:低秩适应技术详解

一、概念讲解

1. 什么是LoRA?

LoRA(Low-Rank Adaptation)是一种参数高效的微调方法,通过引入低秩矩阵分解,仅更新分解后的矩阵,而不是整个模型参数。这种方法在保持模型性能的同时,显著减少了训练参数量和计算资源需求。

2. LoRA的核心思想

  • 低秩矩阵分解:将模型的权重矩阵分解为两个低秩矩阵的乘积,仅更新这两个低秩矩阵。

  • 参数高效:通过减少需要更新的参数量,降低计算资源需求,同时保持模型性能。

3. LoRA的优势

  • 计算效率:显著减少训练参数量,加速训练过程。

  • 内存效率:减少内存占用,适合在资源受限的环境中运行。

  • 性能保持:在保持高效的同时,LoRA能够维持与全精度微调相当的模型性能。

二、代码示例

以下是一个基于Hugging Face Transformers和PEFT库的LoRA微调示例,使用BERT模型进行情感分析任务:

1. 安装必要的库

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

CarlowZJ

我的文章对你有用的话,可以支持

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值