爬虫在大模型微调中的作用(二):实战篇

前言

在上一篇博客中,我们详细介绍了爬虫在大模型微调中的作用,包括基础概念、实现方法和应用场景。在这一篇中,我们将进一步深入实战,通过具体的案例展示如何使用爬虫技术为大模型微调提供数据支持。我们将从实际的项目需求出发,逐步实现一个完整的爬虫系统,并将其应用于大模型的微调过程。

一、实战项目概述

(一)项目背景

假设我们正在开发一个金融领域的智能问答系统,目标是通过大语言模型为用户提供金融市场的实时分析和投资建议。为了实现这一目标,我们需要对预训练的语言模型进行微调,使其能够更好地理解金融领域的术语和逻辑。为此,我们需要收集大量的金融新闻、市场数据和行业报告。

(二)项目目标

  1. 数据采集:使用爬虫技术从金融网站、新闻平台和行业报告网站收集数据。

  2. 数据处理:对采集到的数据进行清洗、预处理和标注。

  3. 模型微调:使用处理后的数据对大语言模型进行微调。

  4. 效果评估:评估微调后的模型性能,确保其在金融领域表现出色。

二、爬虫系统的实现

(一)数据采集模块

1. 选择目标网站

为了实现金融领域的数据采集,我们选择了以下几个目标网站:

2. 爬虫设计

我们将使用Python的requestsBeautifulSoup库来实现爬虫模块。以下是爬虫的基本设计思路:

  • 请求模块:使用requests发送HTTP请求,获取网页内容。

  • 解析模块:使用BeautifulSoup解析HTML内容,提取目标数据。

  • 存储模块:将提取的数据存储到本地文件或数据库中。

3. 示例代码

以下是爬取金融新闻的示例代码:

import requests
from bs4 import BeautifulSoup
import json

# 目标网站URL
NEWS_URL = "https://www.ft.com/latest"

def fetch_news():
    # 发送GET请求
    response = requests.get(NEWS_URL)
    # 检查响应状态码
    if response.status_code != 200:
        print("Failed to fetch data from the website.")
        return []
    
    # 解析HTML内容
    soup = BeautifulSoup(response.content, 'html.parser')
    # 查找新闻列表
    news_list = soup.find_all('div', class_='o-teaser__content')
    # 提取新闻标题和链接
    news_data = []
    for news in news_list:
        title = news.find('a', class_='o-teaser__link').text.strip()
        link = news.find('a', class_='o-teaser__link')['href']
        news_data.append({'title': title, 'link': link})
    
    return news_data

# 存储数据到本地文件
def save_data(data, filename):
    with open(filename, 'w', encoding='utf-8') as f:
        json.dump(data, f, ensure_ascii=False, indent=4)

# 主函数
if __name__ == "__main__":
    news_data = fetch_news()
    save_data(news_data, 'financial_news.json')
    print("Data has been saved to financial_news.json")

(二)数据处理模块

1. 数据清洗

爬取到的数据可能存在以下问题:

  • 重复数据:同一新闻可能在多个页面中出现。

  • 无效数据:部分新闻可能与金融领域无关。

  • 格式问题:数据格式可能不统一,需要进行标准化处理。

2. 数据预处理

我们将对数据进行以下预处理操作:

  • 去重:使用Python的集合(set)或字典(dict)去重。

  • 过滤:通过关键词过滤与金融领域无关的新闻。

  • 格式化:将数据转换为统一的格式,便于后续处理。

3. 示例代码

以下是数据清洗和预处理的示例代码:

import json

# 加载数据
def load_data(filename):
    with open(filename, 'r', encoding='utf-8') as f:
        return json.load(f)

# 数据清洗和预处理
def clean_and_preprocess(data):
    # 去重
    unique_data = {item['link']: item for item in data}.values()
    # 过滤与金融领域无关的新闻
    keywords = ['stock', 'market', 'finance', 'investment']
    filtered_data = [item for item in unique_data if any(keyword in item['title'].lower() for keyword in keywords)]
    return list(filtered_data)

# 主函数
if __name__ == "__main__":
    news_data = load_data('financial_news.json')
    cleaned_data = clean_and_preprocess(news_data)
    save_data(cleaned_data, 'cleaned_financial_news.json')
    print("Cleaned data has been saved to cleaned_financial_news.json")

(三)数据标注模块

为了更好地训练大模型,我们需要对数据进行标注。标注的内容可以包括:

  • 领域标签:标记新闻属于金融领域的具体子领域,如股票、债券、基金等。

  • 情感标签:标记新闻的情感倾向,如正面、负面或中性。

  • 关键词标签:标记新闻中的关键词,如公司名称、股票代码等。

1. 标注工具

我们可以使用开源的标注工具,如Label Studio,或者手动编写标注脚本。

2. 示例代码

以下是简单的标注脚本示例:

import json

# 加载清洗后的数据
def load_cleaned_data(filename):
    with open(filename, 'r', encoding='utf-8') as f:
        return json.load(f)

# 数据标注
def annotate_data(data):
    annotated_data = []
    for item in data:
        # 示例:手动标注领域标签和情感标签
        item['domain'] = 'stock'
        item['sentiment'] = 'positive'
        annotated_data.append(item)
    return annotated_data

# 主函数
if __name__ == "__main__":
    cleaned_data = load_cleaned_data('cleaned_financial_news.json')
    annotated_data = annotate_data(cleaned_data)
    save_data(annotated_data, 'annotated_financial_news.json')
    print("Annotated data has been saved to annotated_financial_news.json")

三、大模型微调

(一)微调环境搭建

我们将使用Hugging Face的transformers库来实现大模型的微调。以下是环境搭建的步骤:

  1. 安装必要的Python库

    pip install transformers datasets torch
  2. 下载预训练模型

    from transformers import AutoModelForSequenceClassification, AutoTokenizer
    
    model_name = "bert-base-uncased"
    tokenizer = AutoTokenizer.from_pretrained(model_name)
    model = AutoModelForSequenceClassification.from_pretrained(model_name, num_labels=3)

(二)微调数据准备

我们将使用标注后的数据来训练模型。数据格式需要转换为模型所需的格式,例如:

  • 输入文本:新闻标题和内容。

  • 标签:情感标签(正面、负面、中性)。

1. 数据转换

以下是数据转换的示例代码:

import json
from transformers import AutoTokenizer

# 加载标注后的数据
def load_annotated_data(filename):
    with open(filename, 'r', encoding='utf-8') as f:
        return json.load(f)

# 数据转换
def convert_data_for_finetuning(data, tokenizer):
    inputs = []
    labels = []
    for item in data:
        text = item['title'] + " " + item['link']
        inputs.append(tokenizer(text, padding='max_length', truncation=True, max_length=512))
        labels.append(item['sentiment'])
    return inputs, labels

# 主函数
if __name__ == "__main__":
    annotated_data = load_annotated_data('annotated_financial_news.json')
    tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
    inputs, labels = convert_data_for_finetuning(annotated_data, tokenizer)
    print("Data has been converted for fine-tuning.")

(三)模型微调

以下是模型微调的示例代码:

import torch
from transformers import AutoModelForSequenceClassification, Trainer, TrainingArguments

# 定义训练参数
training_args = TrainingArguments(
    output_dir='./results',
    num_train_epochs=3,
    per_device_train_batch_size=8,
    per_device_eval_batch_size=8,
    warmup_steps=500,
    weight_decay=0.01,
    logging_dir='./logs',
    logging_steps=10,
)

# 初始化模型和训练器
model = AutoModelForSequenceClassification.from_pretrained("bert-base-uncased", num_labels=3)
trainer = Trainer(
    model=model,
    args=training_args,
    train_dataset=inputs,
    eval_dataset=inputs,
)

# 开始训练
trainer.train()
print("Model has been fine-tuned.")

四、效果评估

(一)评估指标

我们将使用以下指标来评估微调后的模型性能:

  • 准确率(Accuracy):模型预测正确的比例。

  • 精确率(Precision):模型预测为正的样本中实际为正的比例。

  • 召回率(Recall):实际为正的样本中模型预测为正的比例。

  • F1分数(F1 Score):精确率和召回率的调和平均值。

(二)评估代码

以下是评估模型性能的示例代码:

from sklearn.metrics import accuracy_score, precision_recall_fscore_support

# 定义评估函数
def compute_metrics(pred):
    labels = pred.label_ids
    preds = pred.predictions.argmax(-1)
    precision, recall, f1, _ = precision_recall_fscore_support(labels, preds, average='weighted')
    acc = accuracy_score(labels, preds)
    return {
        'accuracy': acc,
        'f1': f1,
        'precision': precision,
        'recall': recall
    }

# 评估模型
trainer.evaluate()
print("Model evaluation completed.")

五、应用场景

(一)金融新闻分析

微调后的模型可以用于金融新闻的情感分析,帮助投资者快速了解市场动态。以下是应用场景的示例代码:

# 示例:情感分析
def analyze_sentiment(text, model, tokenizer):
    inputs = tokenizer(text, return_tensors='pt')
    outputs = model(**inputs)
    logits = outputs.logits
    predicted_class = torch.argmax(logits).item()
    sentiment = ['negative', 'neutral', 'positive'][predicted_class]
    return sentiment

# 测试
news_text = "The stock market is expected to rise this week."
sentiment = analyze_sentiment(news_text, model, tokenizer)
print(f"Sentiment: {sentiment}")

(二)投资建议生成

微调后的模型可以结合市场数据生成投资建议。以下是应用场景的示例代码:

# 示例:投资建议生成
def generate_investment_advice(news_list, model, tokenizer):
    advice = []
    for news in news_list:
        sentiment = analyze_sentiment(news['title'], model, tokenizer)
        if sentiment == 'positive':
            advice.append(f"Consider buying {news['link']}")
        elif sentiment == 'negative':
            advice.append(f"Consider selling {news['link']}")
        else:
            advice.append(f"Hold {news['link']}")
    return advice

# 测试
advice = generate_investment_advice(annotated_data[:5], model, tokenizer)
for a in advice:
    print(a)

六、注意事项

(一)法律与道德问题

在爬取数据时,必须遵守相关法律法规,尊重网站的robots.txt文件,避免抓取未经授权的内容。同时,要保护用户隐私,避免抓取涉及个人隐私的信息。

(二)反爬虫机制

许多金融网站会设置反爬虫机制,如限制访问频率、验证码等。在设计爬虫时,可以通过以下方式应对:

  • 设置合理的访问频率:避免频繁访问网站。

  • 使用代理IP:通过代理IP隐藏爬虫的真实IP地址。

  • 模拟浏览器行为:设置HTTP头信息,模拟浏览器的访问行为。

(三)数据质量

爬取到的数据可能存在质量问题,如数据不完整、数据错误等。在使用这些数据进行微调时,需要对数据进行清洗和预处理,以确保数据的质量。

(四)性能优化

爬虫的性能直接影响数据的采集效率。在设计爬虫时,可以通过以下方式优化性能:

  • 异步请求:使用aiohttp等异步库,提高请求效率。

  • 多线程:使用threading库实现多线程爬取。

  • 分布式爬虫:使用Scrapy等框架实现分布式爬取。

七、总结

在本文中,我们通过一个完整的实战项目,展示了如何使用爬虫技术为大模型微调提供数据支持。我们从数据采集、数据处理、数据标注到模型微调和效果评估,逐步实现了金融领域智能问答系统的开发。通过爬虫技术,我们能够高效地获取大量特定领域的数据,并通过微调提升模型的性能。希望本文能够为读者提供一个清晰的实战指南,帮助大家更好地应用爬虫技术于大模型微调项目中。


附录:相关工具和资源


参考文献

[1] 爬虫技术实战,Python开发者社区,2023. [2] 大语言模型微调实战,AI研究实验室,2024.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

CarlowZJ

我的文章对你有用的话,可以支持

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值